

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

REAL-TIME IMPLEMENTATION OF AN ASYNCHRONOUS
VISION-BASED TARGET TRACKING SYSTEM IN AN

UNMANNED AERIAL VEHICLE

by

Michael A. Schenk

June 2007

 Thesis Advisor: Isaac I. Kaminer
 Second Reader: Vladimir N. Dobrokhodov

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Real-Time Implementation of an Asynchronous
Vision-Based Target Tracking System for an Unmanned Aerial Vehicle.
6. AUTHOR(S) Michael A. Schenk

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
 Currently, small unmanned aerial vehicles developed by NPS have been able to locate and track stationary and moving
targets on the ground. New methods of continuous target tracking are always being developed to improve speed and accuracy,
ultimately aiding the user of the system. This thesis describes one such method, utilizing an open loop filter as well as an external
correction source: Perspective View Nascent Technologies (PVNT). While the PVNT correction can theoretically improve the
accuracy from 20-30 meters to 1-2 meters, it does have a disadvantage in that the target position updates are delayed anywhere
from 1-10 seconds. In order to account for the delay, an asynchronous filter is used to update the target position data given the
external position correction from PVNT. Two cases have been tested including the general filter and one that utilizes a road model
in the calculations. While an earlier thesis developed the basic simulation for the system, this thesis discusses improvements and
corrections to the simulation model as well as the necessary steps for real-time implementation.

15. NUMBER OF
PAGES

157

14. SUBJECT TERMS Unmanned Aerial Vehicle, Asynchronous Filter, Perspective View Nascent
Technologies, Vision-Based Target Tracking

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

REAL-TIME IMPLEMENTATION OF AN ASYNCHRONOUS
VISION-BASED TARGET TRACKING SYSTEM IN AN

UNMANNED AERIAL VEHICLE

Michael A. Schenk
Ensign, United States Navy

B.S., United States Naval Academy, 2007

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2007

Author: Michael A. Schenk

Approved by: Isaac I. Kaminer
Thesis Advisor

Vladimir N. Dobrokhodov
Second Reader

Anthony J. Healey
Chairman, Department of Mechanical and Astronautical
Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Currently, small unmanned aerial vehicles developed by NPS have been able to

locate and track stationary and moving targets on the ground. New methods of continuous

target tracking are always being developed to improve speed and accuracy, ultimately

aiding the user of the system. This thesis describes one such method, utilizing an open

loop filter as well as an external correction source: Perspective View Nascent

Technologies (PVNT). While the PVNT correction can theoretically improve the

accuracy from 20-30 meters to 1-2 meters, it does have a disadvantage in that the target

position updates are delayed anywhere from 1-10 seconds. In order to account for the

delay, an asynchronous filter is used to update the target position data given the external

position correction from PVNT. Two cases have been tested including the general filter

and one that utilizes a road model in the calculations. While an earlier thesis developed

the basic simulation for the system, this thesis discusses improvements and corrections to

the simulation model as well as the necessary steps for real-time implementation.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. OVERVIEW...1
B. BACKGROUND ..1

1. Perspective View Nascent Technologies (PVNT)1
2. Asynchronous Constant Gain Kalman Filter....................................2

C. THESIS DESCRIPTION ..3

II. SYSTEM STRUCTURE ...5
A. SEQUENCE OF OPERATION..5

1. Linear Filter with PVNT Update ...5
B. GENERAL AND ROAD FOLLOWING FILTER DIFFERENCES..........6
C. OBJECTIVES ..7

III. MODELING...9
A. NON REAL-TIME MODELING...9

1. General Filter ...9
2. Road Following Filter with Separate Model File Integration..........9

a. True Target Motion with Road Following Characteristics ...10
b. PVNT Model..12
c. Optimization Function..12
d. Asynchronous Filter ...13
e. Open-Loop Filter...15

3. Road Following Filter with Numerical Euler Integration15
a. Integration Equations ...16

B. REAL-TIME MODELING...17
1. Problems ...17

a. Data Storage..17
b. The S-Function ...18
c. Arrays vs. Buffers..18

2. General Filter ...19
a. The True Target Model and PVNT Update Generator20
b. The Open-Loop Filter ...22
c. Overall Real-Time Design and Function with S-Function

Block ..23
3. Road Following Filter ..24

a. The True Target Model and PVNT Update Generator24
b. The Open Loop Filter ...25
c. Overall Real-Time Design and Function with S-Function

Block ..26

IV. SIMULATION AND RESULTS ..29
A. SIMULATION ...29

1. Road Models ...29

 viii

a. Third Order Road Model ..29
b. Circular Road Model ..30

2. Simulation Parameters ..32
a. Simulation Time..32
b. Sample Time..32
c. Asynchronous Kalman Filter Gains32
d. Reference Frame...33
e. PVNT Parameters ...33

B. RESULTS ...34
1. Non Real-Time Models ..34

a. Road Following Model with Separate Simulink Model
Integration...35

b. Road Following Model with Numerical Forward Euler
Integration...37

2. Real-Time Models ..41
a General Filter..41
b. Road Following Filter...62
c. Additional Road Models and Worst Case Scenarios85

V. CONCLUSION AND RECOMMENDATIONS...95
A. CONCLUSIONS ..95
B. RECOMMENDATIONS...95

APPENDIX...97
A. GENERAL FILTER..97

1. Manual ..97
2. Code...105

B. ROAD FOLLOWING FILTER S-FUNCTION117
1. Manual ..117
2. Code...127

LIST OF REFERENCES..139

INITIAL DISTRIBUTION LIST ...141

 ix

LIST OF FIGURES

Figure 1. Linear filtering with PVNT update ..5
Figure 2. PVNT processing and Kalman filtering with respect to time6
Figure 3. Target Estimation Comparison for Open Loop and Road Following Filters.....7
Figure 4. Road following asynchronous filter...10
Figure 5. True target position and velocity generation with road following...................10
Figure 6. Simulated Road Profile [After Ref. 6] ...11
Figure 7. PVNT update generator ...12
Figure 8. Asynchronous filter – Subsystem 1 ...13
Figure 9. Asynchronous filter – Subsystem 2 ...13
Figure 10. Separate Simulink model containing asynchronous filter14
Figure 11. Single integration open-loop filter ...15
Figure 12. Asynchronous filter model with state variables...16
Figure 13. True target model and PVNT update generator for general filter....................20
Figure 14. PVNT update signal subsystem ...21
Figure 15. General filter real-time model..23
Figure 16. Open loop filter for the road following model...25
Figure 17. Road following filter real-time model ...26
Figure 18. Third order road equation in Simulink subsystem for real-time simulation....30
Figure 19. Circular road equation in Simulink subsystem for real-time simulation31
Figure 20. Circular road model ...32
Figure 21. Simulated pseudo-random PVNT update delay...33
Figure 22. Comparison of actual vs. estimated target position – Simulink integration35
Figure 23. Comparison of actual vs. estimated target velocity – Simulink integration36
Figure 24. Comparison of actual vs. estimated ρ value – Simulink integration................37
Figure 25. Comparison of actual vs. estimated target position – Euler integration38
Figure 26. Comparison of actual vs. estimated target velocity – Euler integration39
Figure 27. Comparison of actual vs. estimated ρ velocity – Euler integration40
Figure 28. General filter position comparison plot – Third order road model – Ideal

conditions...41
Figure 29. General filter position error vs. time – Third order road model42
Figure 30. General filter velocity comparison plot – Third order road model – Ideal

conditions...43
Figure 31. General filter velocity error vs. time – Third order road model43
Figure 32. General filter position comparison plot – Circular road model – Ideal

conditions...44
Figure 33. General filter position error vs. time – Circular road model............................45
Figure 34. General filter velocity comparison plot – Circular road model – Ideal

conditions...46
Figure 35. General filter velocity error vs. time – Circular road model............................47
Figure 36. General filter position comparison plot – Third order road model – 5

second PVNT delay ...48

 x

Figure 37. General filter velocity comparison plot – Third order road model – 5
second PVNT delay ...49

Figure 38. General filter position comparison plot – Third order road model – 10
second PVNT delay ...49

Figure 39. General filter velocity comparison plot – Third order road model – 10
second PVNT delay ...50

Figure 40. General filter position comparison plot – Circular road model – 5 second
PVNT delay ...51

Figure 41. General filter position error plot – Circular road model – 5 second PVNT
delay...52

Figure 42. General filter velocity comparison plot – circular road model – 5 second
PVNT delay ...53

Figure 43. General filter position error plot – Circular road model – 10 second PVNT
delay...54

Figure 44. General filter velocity comparison plot – Circular road model – 10 second
PVNT delay ...54

Figure 45. General filter position comparison plot – Third order road model – ± 5 m
PVNT noise..55

Figure 46. General filter velocity comparison plot – Third order road model – ± 5 m
PVNT noise..56

Figure 47. General filter position comparison plot – Third order road model – ± 10 m
PVNT noise..57

Figure 48. General filter velocity comparison plot – Third order road model – ± 10 m
PVNT noise..58

Figure 49. General filter position comparison plot – Circular road model – ± 5 m
PVNT noise..59

Figure 50. General filter position error plot – Circular road model – ± 5 meter PVNT
noise ...59

Figure 51. General filter velocity comparison plot – Circular road model – ± 5 meter
PVNT noise..60

Figure 52. General filter position error plot – Circular road model – ± 10 meter
PVNT noise..61

Figure 53. General filter velocity comparison plot – Circular road model – ± 10
meter PVNT noise..62

Figure 54. Road following filter position comparison plot – Third order road model –
Ideal conditions..63

Figure 55. Road following filter position error plot – Third order road model – Ideal
conditions...64

Figure 56. Road following filter velocity comparison plot – Third order road model –
Ideal conditions..64

Figure 57. Road following filter velocity error plot – Third order road model – Ideal
conditions...65

Figure 58. Road following filter ρ comparison plot – Third order road model – Ideal
conditions...66

 xi

Figure 59. Road following filter position comparison plot – Circular road model –
Ideal conditions..66

Figure 60. Road following filter position error plot – Circular road model – Ideal
conditions...67

Figure 61. Road following filter velocity comparison plot – Circular road model –
Ideal conditions..68

Figure 62. Road following filter velocity error plot – Circular road model – Ideal
conditions...69

Figure 63. Road following filter ρ comparison plot – Circular road model – Ideal
conditions...69

Figure 64. Road following filter position comparison plot – Third order road model –
5 second PVNT delay ..70

Figure 65. Road following filter velocity comparison plot – Third order road model –
5 second PVNT delay ..71

Figure 66. Road following filter ρ comparison plot – Third order road model – 5
second PVNT delay ...71

Figure 67. Road following filter position comparison plot – Third order road model –
10 second PVNT delay ..72

Figure 68. Road following filter velocity comparison plot – Third order road model –
10 second PVNT delay ..73

Figure 69. Road following filter ρ comparison plot – Third order road model – 10
second PVNT delay ...73

Figure 70. Road following filter position error plot – Circular road model – 5 second
PVNT delay ...74

Figure 71. Road following filter velocity comparison plot – Circular road model – 5
second PVNT delay ...75

Figure 72. Road following filter position error plot – Circular road model – 10 second
PVNT delay ...76

Figure 73. Road following filter velocity comparison plot – Circular road model – 10
second PVNT delay ...77

Figure 74. Road following filter position comparison plot – Third order road model –
± 5 m PVNT noise...78

Figure 75. Road following filter velocity comparison plot – Third order road model –
± 5 m PVNT noise...78

Figure 76. Road following filter ρ comparison plot – Circular road model – ± 5 m
PVNT noise..79

Figure 77. Road following filter position comparison plot – Third order road model –
± 10 m PVNT noise...80

Figure 78. Road following filter velocity comparison plot – Third order road model –
± 10 m PVNT noise...80

Figure 79. Road following filter ρ comparison plot – Circular road model – ± 10 m
PVNT noise..81

Figure 80. Road following filter position error plot – Circular road model – ± 5 m
PVNT noise..82

 xii

Figure 81. Road following filter velocity comparison plot – Circular road model –
± 5 m PVNT noise...83

Figure 82. Road following filter position error plot – Circular road model – ± 10 m
PVNT noise..84

Figure 83. Road following filter velocity comparison plot – Circular road model –
± 10 m PVNT noise...85

Figure 84. Road model comparison ..86
Figure 85. Filter position estimation comparison – Model 1 ..87
Figure 86. Filter estimation error comparison – Model 1 ...88
Figure 87. Filter position estimation comparison – Model 2 ..88
Figure 88. Filter estimation error comparison – Model 2 ...89
Figure 89. Filter position estimation comparison – Model 3 ..90
Figure 90. Filter estimation error comparison – Model 3 ...90
Figure 91. Filter position estimation comparison – Model 4 ..91
Figure 92. Filter estimation error comparison – Model 4 ...92
Figure 93. Position comparison plot – Worst case scenario..93
Figure 94. Filter estimation error comparison – Worst case scenario...............................93

 xiii

ACKNOWLEDGMENTS

The author would like to thank Professor Isaac I. Kaminer for his efforts in

explaining the core concepts behind the vision-based target tracking system as well as

aiding in the familiarization process with previous work on the subject matter. The author

would also like to thank Dr. Eng. Ioannis Kitsios for the countless meetings spent helping

to develop the real-time models and orientation to the ways of the S-function.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. OVERVIEW

The goal of the work in this thesis is to contribute to continuous improvements

that are being made in the area of vision-based target tracking and motion estimation.

Changes to the current system allow the entire process to be faster, more accurate, and

more user-friendly. Improvements to the technology can be simulated using computer

programs such as MATLAB and Simulink, implemented, and then field tested during

scenarios run by NPS during the Tactical Network Topology (TNT) sessions. Ultimately,

the systems developed here can make their way to military use in surveillance and

reconnaissance missions. Concepts examined in this thesis include the development and

implementation non real-time and real-time target motion estimation systems as well as

asynchronous target tracking filters with and without road following capabilities.

B. BACKGROUND

Several important tools are discussed that play prominent roles in the developed

systems in this thesis. The PVNT position update system is described first, followed by

the background on the asynchronous constant gain Kalman filter.

1. Perspective View Nascent Technologies (PVNT)

One of the problems with incorporating detailed terrain maps into real-time

systems is the large amount of required data storage and equally large amount of

necessary computing power needed to deal with the loading and retrieval of map sections.

Developed by Dr. Wolfgang Baer, the PVNT system offers a low-cost alternative

available on a personal computer. The PVNT system begins with terrain data collected by

the National Imagery and Mapping Agency (NIMA) and contains tools that allow updates

to be included from local measurement devices and other sensors [1]. The inclusion of

this new data results in a more accurate terrain mapping system than can be more

efficiently updated to reflect terrain variations rather than creating entirely new maps.

 2

Another major advantage PVNT has over other scene-visualization programs is

that the terrain data are stored using raster formats (pixels) instead of using a polygon

database [1]. This makes implementation of the system using PVNT combined with

remote sensor arrays in real-time much more practical.

Tests conducted at Camp Roberts, CA, depict how PVNT works hand-in-hand

with a vision-based target tracking system. Initially, the target is acquired and the gimbal-

mounted camera passes data to image processing software. Then, open-loop, non-linear

filters are able to estimate the target position and resulting velocity. After around 20

seconds of tracking, the accuracy for this portion of the system is within about 10-20

meters. The PVNT software then compares data coming in from GPS, camera angle

values, and the images from the UAV camera to the terrain database for the area. Since

the accuracy of the database has roughly a one meter resolution, the accuracy of the

position update from PVNT can be ten times more accurate than the non-linear filter

estimation. However, because of the multiple data inputs and necessary image

comparison between the camera and terrain database, the required processing time results

in a delay up to ten seconds before the position update is delivered to the system [6].

2. Asynchronous Constant Gain Kalman Filter

It is in target motion estimation that the Kalman filter can be employed. One of

the reasons that the Kalman filter works well with target tracking applications is its

ability to compare and integrate data from multiple sensors (such as a position update

with estimated target velocity and estimated position) to give the most accurate result.

However, standard Kalman filters are hindered by the fact that they must have evenly-

spaced data inputs and updates for maximum effectiveness. The filter runs into accuracy

problems when data arrives at different sampling rates or delayed times.

The asynchronous constant gain Kalman filter was developed because of the need

for an accurate estimation tool in a system with delayed data inputs. It is the preferred

filter to ensure better system robustness and overall result accuracy because the

asynchronous version of the filter is able to accept out of synchronization data entries

from sensors. Thus, the asynchronous constant gain Kalman filter is a better match for

 3

this target tracking system since the data from the PVNT update is delayed anywhere

from one to ten seconds before being entered into the filter [6].

C. THESIS DESCRIPTION

Chapter I presents a general overview of the work of the thesis with respect to

UAV target tracking capabilities as well as background for two of the main tools utilized

in the thesis: the PVNT update system and asynchronous constant gain Kalman filter. The

next chapter will outline, step-by-step, the process that takes place during target motion

estimation with and without position updates. The chapter also discusses the general and

road following filters; the two different styles of filters that are employed in the real- and

non real-time models. Chapter III will briefly review the current non real-time general

filter model for target tracking presented in an earlier thesis and then develop a road

following version of the model for non real-time simulation in Simulink. Additionally,

the chapter will discuss the steps needed to convert the non real-time models into real-

time models along with the actual modeling of the real-time general and road following

filters in Simulink. Chapter IV will go over the system parameters and actual simulation

of the non real-time and real-time models. While the non real-time road following model

will be tested using a single road model to ensure proper function, the real-time general

and road following models will be tested with numerous simulated roads and varying

input errors. All of the necessary results will follow in the chapter along with

explanations for the response of the system to different scenarios. Finally, Chapter V will

present the conclusions from the thesis results and recommendations for future work in

the field of study.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. SYSTEM STRUCTURE

This chapter provides flow charts and diagrams describing the processes that take

place in the filter operations with and without PVNT updates. The final section also

explains the objectives for the thesis.

A. SEQUENCE OF OPERATION

The first task is to organize the order of the processes within the target tracking

system. Then, the improved system with the general linear filter must be altered to

incorporate the PVNT position updates in parallel with the normal operation.

1. Linear Filter with PVNT Update

Figure 1. Linear filtering with PVNT update

 6

Figure 1 shows the asynchronous filtering system with the addition of the PVNT

position update. After the necessary image processing by the PVNT software, the new

estimated target position is fed into the asynchronous constant gain Kalman filter. The

asynchronous filter then performs the required calculations, rewriting over the data

previously stored during the delay, and outputs a new estimated target position to the

original non-linear filter. Figure 2 below shows how the PVNT processing and

asynchronous constant gain Kalman filter relates to the time interval for the system.

Figure 2. PVNT processing and Kalman filtering with respect to time

B. GENERAL AND ROAD FOLLOWING FILTER DIFFERENCES

The two different style filters tested in this thesis are the general and road

following filters. Both filters receive PVNT updates and perform target motion estimation

along road models during the simulations. The difference, however, is that the road

following filter uses the road model equations in the target motion estimation calculations

while the general filter does not. This allows the x, y, z coordinates used by the general

filter model to be simplified in the road following model by a road parameter, ρ . This

concept is discussed in greater detail in Chapter III.

 7

The figure below depicts the effects of the road following parameter by

comparing the position estimates of an open loop (OL) filter and an asynchronous road

following filter (AF) with PVNT along a sample road profile. The filter estimates are

identical during straight portions of the road, but the road following filter provides much

better position estimates during areas of greater curvature. The position error is due to

velocity estimation error, but the estimate still lies along the road profile.

Figure 3. Target Estimation Comparison for Open Loop and Road Following

Filters

C. OBJECTIVES

While the basic non real-time filter design is discussed in the master’s thesis in

Reference 6, numerous improvements and corrections were needed to make the non real-

time road following filter perform correctly. The generation and storage of the PVNT

update will be changed and the asynchronous constant gain Kalman filter will be

modeled in Simulink. Additionally, the non real-time general and road following filter

models will be converted into systems capable of real-time implementation. The two real-

time filter systems will also be extensively simulated and the results analyzed to

determine conditions of peak and poor performance.

 8

THIS PAGE INTENTIONALLY LEFT BLANK

 9

III. MODELING

This chapter details the modeling process for the non real-time and real-time

systems. Included in the sections are models for the general and road following filters for

each style system as well as development of the road equations. The process of

converting the non real-time models into models that can be implemented in real-time

systems is also cited with major focus placed on the S-function and its capabilities.

A. NON REAL-TIME MODELING

Before models can be implemented in a real-time system, non real-time models

had to be produced. These non real-time models serve as a starting point for the

development of the real-time filter.

1. General Filter

The general asynchronous filter and MATLAB code is found in Reference 6 and

models the general target tracking filter incorporating a delayed PVNT update. Many of

the components for the road following version of the filter are similar and will be

discussed in the next section.

2. Road Following Filter with Separate Model File Integration

The main addition to the road following asynchronous filter is the parameter ρ,

which defines the road along which the target is moving. Since the target plane is

assumed to be two dimensional, ρ relates to the x and y coordinates of the target while z

relates to local altitude. The road following asynchronous filter was corrected from

Reference 6 due to errors in the MATLAB code concerning data storage and retrieval.

Portions of the Simulink model were also adjusted to correctly generate and pass on the

PVNT position update to later tasks in the system. The updated road following filter

system is shown in Figure 4.

 10

Figure 4. Road following asynchronous filter

Next, the Simulink diagram is broken down with a description of the function of

each component in the overall system.

a. True Target Motion with Road Following Characteristics

Figure 5. True target position and velocity generation with road following

 11

The non real-time system begins with the target of constant velocity and

integrating to calculate ρ. The new ρ value is then inputted into a MATLAB function

block that calculates x, y, and z target position based on a predetermined equation for the

road. For the preliminary simulation tests, the equation for the road based on the

parameter ρ was taken from Reference 6:

0

74.9025.00.0000192 y 23

=
+−=

=

z

x
ρρρ

ρ

 (1) [Ref. 6]

The above system of equations produces a road profile that is depicted in

the next figure.

Figure 6. Simulated Road Profile [After Ref. 6]

This target data along with the ρ values are stored for later use as the

simulated PVNT update. For the Simulink model, it is more practical to assume that the

PVNT estimate, with one to two meter accuracy, can be simulated by taking an actual

target position from the true target model at time τ instead of trying to run PVNT

software.

 12

b. PVNT Model

Figure 7. PVNT update generator

Figure 7 depicts the PVNT update block and its components for the non

real-time road following model. The block receives and takes in the true target position

and velocity from the target model along with the system time and a random PVNT

update delay. The fifth input is an oscillating step signal that indicates when the PVNT

update is active (signaling an update is ready to be sent to the asynchronous constant gain

Kalman filter). Additionally, a PVNT input error can be included in the system to

simulate the expected one to two meter accuracy of the device.

c. Optimization Function

The optimization function block is used to determine the parameter ρ, and

was not changed from the earlier thesis. The method of optimization that is used in the

non real-time road following filter simply finds ρ that minimizes the distance from the

inputted PVNT position update to the road. Once the minimum distance over a maximum

range is found, the corresponding ρ value for the x and y road coordinates is passed on to

the asynchronous filter.

 13

d. Asynchronous Filter

The asynchronous filter portion of the diagram has multiple triggered

subsystems.

Figure 8. Asynchronous filter – Subsystem 1

The first subsystem calculates time τ once given the current system time t

and the PVNT delay time. The time τ is then passed on to the second subsystem along

with the PVNT delay and the PVNT update *ρ .

Figure 9. Asynchronous filter – Subsystem 2

 14

Figure 9 shows the data being passed through a mux block and into a

MATLAB function block, which outputs the estimated position (
^
p) and velocity (

^
v)

data for the target at time t. It is important to note that this subsystem only runs when the

PVNT update is present. The MATLAB function block refers to a function written in

MATLAB code that actually performs the asynchronous double integration. The filter is

actually contained in a separate Simulink model file and called by the MATLAB

function.

Figure 10. Separate Simulink model containing asynchronous filter

The filter operates independently of the time of the overall system,

allowing it to be asynchronous. The MATLAB code stores the new estimated position

and velocity data as the asynchronous filter integrates from time τ to t and outputs the last

position and velocity values to initialize the open-loop filter. While the asynchronous

filter for the target tracking system without road following capabilities must integrate

 15

variables for velocity (in the x, y, and z directions) and position (x, y, z), the asynchronous

filter for the road following system only integrates the scalar velocity and road

parameter, ρ . Since the road equation is known before tracking begins, the ρ value is

easily converted into x, y, and z coordinates.

e. Open-Loop Filter

Figure 11. Single integration open-loop filter

The final step in the simulation is the open-loop filter subsystem. This

block essentially performs a dead-reckoning position calculation based on the inputted

estimated velocity and contains a single integrator that operates during the periods of

time with no PVNT update.

3. Road Following Filter with Numerical Euler Integration

The main difference between the road following filter developed in Section 2

above and the one described in Section 3 of this chapter is the conversion of the Simulink

model file containing the asynchronous filter in Figure 10 to a set of numerical equations.

These equations are used for forward Euler integration, allowing the system to quickly

determine position estimates from timeτ to time t (see Figure 2). It is necessary to

 16

implement the integration model in MATLAB code to decrease computation time during

simulation. Additionally, a real-time system cannot operate properly using multiple

Simulink models.

a. Integration Equations

In order to implement double integrator into MATLAB code, the diagram

must be represented numerically. By taking the asynchronous filter model from Figure

10, removing the scope blocks, and adding state variables before and after the integrator

blocks, a set of equations can be developed.

Figure 12. Asynchronous filter model with state variables

Using the state variables shown in Figure 12, the state equations are as

follows:

⎟
⎠
⎞

⎜
⎝
⎛ −+=

⎟
⎠
⎞

⎜
⎝
⎛ −=

∧•

∧•

ρρ

ρρ

121

22

Kxx

Kx
 and

() ()

() () dtxkxkx

dtxkxkx
•

•

+=+

+=+

111

222

1

1
 (2)

 17

These state equations for Euler integration can easily be implemented in

MATLAB code utilizing the data already stored in arrays and loops within the script.

B. REAL-TIME MODELING

The non real-time models can be used as a starting point for developing the

general and road following models that can be implemented in real-time. Problems

encountered by shifting to a real-time model and their solutions are first discussed

followed by the actual design of the general and road following real-time models.

1. Problems

Many of the problems encountered during the conversion from a non real-time to

real-time model dealt with synchronized data storage and retrieval. The computation

speed of different methods of modeling the system is also analyzed and discussed.

a. Data Storage

One of the problems that arose when modifying the MATLAB code to

allow the system to run in real-time was the method of data storage. The simulation of the

system that had been created in Simulink simply wrote all of the data to arrays in the

function code and by using “to workspace” blocks in the simulation model. There is no

problem with this method when the system only runs for 180 seconds, as in the tests for

the non real-time road following model in Chapter IV. A system that is actually

implemented in hardware, however, may run from just a few minutes up to several hours.

Hours of run time can result in massive amounts of data from the programs being

executed. Additionally, it is not practical to increase the step size of the program to

reduce the amount of data collected as accuracy will suffer as a result of the decreased

number of inputs.

The solution, in the case of this system, is to only hold the minimum

amount of data required before releasing it. The next decision to be made is how much

data actually needs to be stored. The system being studied has a delay associated with the

PVNT processing time, assumed to be anywhere from one to ten seconds. Once the

 18

PVNT position update is calculated for time τ (equal to the current time, t, minus the

PVNT delay), it is compared to the estimated target position at time τ. This is the first

portion of the asynchronous filter implemented through the Euler integration embedded

in the MATLAB function. Therefore, the minimum amount of data that can be stored

without affecting system function is the maximum PVNT delay divided by the step size

or,

dT
t

dT
delay τ−

=max (3)

From this equation, the code can be adjusted to allocate only enough data

to account for the maximum expected PVNT delay. The resulting program will help

avoid data overflow and storing huge amounts of data over prolonged run times.

b. The S-Function

The next problem is how to simulate the system with the necessary speed

for real-time implementation. The solution to the dilemma is found in the S-function

block in Simulink. The S-function block is linked to an S-Function file containing C code

(in this case) that can carry out all the necessary tasks of a system with the speed needed

for real-time simulation. Therefore, every MATLAB function shown in the earlier

sections of this chapter such as the asynchronous filter, optimization, and data storage

functions needed to be implemented in C code. After the code compiles without error, it

is converted into a MATLAB .mex file, which allows it to be used by the Simulink

model. The S-function can receive inputs, send out outputs, and make function calls,

combining the relative simplicity of a Simulink model with the speed and capabilities of

C code.

c. Arrays vs. Buffers

A problem encountered with the conversion process from MATLAB code

to C code involved the fact that the size of an array in MATLAB does not have to be

preset, but an array in C code does. The maximum size of an array in C code is set by

using an integer to define the number of data storage spaces. Unfortunately, this means

 19

that global variable or a parameter cannot be used to initialize the maximum array size.

Therefore, the method of data storage in C code would have to be different from the

methods used in MATLAB code. Since the delays of the PVNT update vary anywhere

from one to ten seconds and the code had to be robust enough to handle a larger delay if

the user required it, an array-based data storage system would not be practical in C code.

While arrays are typically simpler to write code-wise, overflow of an array can cause

errors that may prematurely end the simulation. Another problem that was encountered

by using an array is that the data stored inside an array is reset following each iteration of

the program. Thus, the program is not able to access information stored during previous

runs, which is necessary for the asynchronous Euler integration process. As a result of

these shortfalls, it was determined that another means of storing the accumulated data

was needed.

While several means of data storage were tested, the only method that

overcame the disadvantages of arrays and met all the requirements needed for data

storage was to use buffers. While the size of a buffer does need to be preset, parameters

in the S-function can be used to perform the task, even though they couldn’t be used to

preset the sizes of arrays. This means that the user does not have to open the actual C

program and change lines of code if the maximum expected PVNT delay were to change.

The user can simply change one number in the parameter input of the S-function block

and have the maximum buffer size reset automatically by the code.

Additionally, buffers are a type of persistent memory, meaning that the

data stored inside remains saved until a command to clear the buffer is given. Therefore,

the data from the open loop filter can be stored in buffers and recalled at the start of the

asynchronous Euler integration. While the coding of the buffers is more involved than

setting up a group of arrays, the requirements of the system make buffers the ideal

method of data storage.

2. General Filter

Since a model or equation for the road may not be known ahead of time in most

real-time situations, the general non real-time filter simulation from the beginning of this

 20

chapter was first prepared for implementation in the S-function. The asynchronous filter

portion along with all data storage from the asynchronous filter needed to be

implemented in C code and moved inside the S-function.

a. The True Target Model and PVNT Update Generator

The simulation of the real-time system will not use an actual tracked

ground target, so a model needs to be used during the testing process.

Figure 13. True target model and PVNT update generator for general filter

The diagram in Simulink is nearly identical to the one used in Figure 5 in

the system simulation from earlier in the chapter. The target model begins with a velocity

that is integrated and then sent to target position generating subsystem to determine the

target position coordinates. The subsystem defines a preset road model on which the

 21

target will travel. In the case of this system, only the x and y coordinates are used for the

2-D target tracking, while the z coordinate is set to zero, allowing it to be included for

possible future use.

Additionally, the true target model doubles as a generator for the PVNT

position updates. The outputs from the position generation subsystem are utilized as a

portion of the PVNT update as well. Since the assumed accuracy of the position update is

1± meter, the model incorporates this deviation by means of a random number generator

(with a mean value of zero and a range of 1±) through a summing junction. The modified

PVNT position update is passed to the S-function for later use.

A small difference in the true target model from the original non real-time

subsystem block shown in Figure 5 is the removal of all continuous state blocks. The

integrator block is one such tool that had to be altered during the transition to a system

capable of real-time calculations. Since samples are only taken every dT seconds by the

system during simulation and a fixed step solver is used by the Simulink model, only

discrete state blocks can be used. Therefore, every continuous time integrator block used

in the true target model and filter subsystems had to be swapped with discrete state

integrators.

Figure 14. PVNT update signal subsystem

 22

Based on previous information regarding the PVNT computation time, it

is known that the delay associated with the position update can range from one to ten

seconds. Therefore, a simple pulse generator could not be used due to the need for a

varying delay time. The PVNT update subsystem shown above solves the problem by

offering a pseudo-random sequence covering the full range of delay times.

b. The Open-Loop Filter

During periods of operation when a PVNT update is not present, the open

loop, single integration filter performs the dead reckoning calculations for target position.

Unlike its road following counterpart, the general filter system does not have a ρ value

based on the known road model with which it can simplify calculations. Therefore, each

individual coordinate has to be passed through its own open loop integrator in order to

compute the updated position. So, even though all the open loop filters are connected to

the same reset trigger, the x, y, and z open loop filters receive their own respective

position and velocity initial conditions. The entire subsystem is contained in a function

call block that can be initiated by the S-function.

 23

c. Overall Real-Time Design and Function with S-Function Block

Figure 15. General filter real-time model

There are more inputs and outputs to the individual subsystem blocks

without the added simplicity of the ρ road equation variable. The real-time general filter

model really begins with the true target model subsystem and PVNT update signal

blocks. The PVNT update signal is a repeating sequence that simulates a varying PVNT

update delay from one to ten seconds. Until the signal goes high, indicating a PVNT

position update is available; the data from the PVNT update portion of the true target

model is ignored. The last known x, y, and z coordinates and velocities are passed to the

open loop filter where they are sent through the single integration system. The updated

positions are then fed back into the S-function to be stored in the proper buffers before

repeating the process.

 24

However, upon the receipt of a PVNT update, the path of data slightly

changes. The position update for time τ arrives at the inputs of the S-function block and

is taken into the C code. Then, the time from the last PVNT update is calculated (delay)

and used to determine the value for timeτ . Using the persistent memory characteristic of

the buffers, the estimated position of the target at time τ is then compared to the PVNT

update and sent to a C function that performs Euler integration up to the current time t,

storing the new position and velocity data in buffers after each iteration. The final

estimated position and velocity data from the Euler integration function for time t are

passed on as the initial conditions for the open loop filter subsystem. The integrator reset

is also triggered before the open loop filter calculations continue until the next PVNT

position update.

During the model simulation, a storage block is used to send all the

pertinent data to a .mat file. A separate script file in MATLAB loads the .mat file and

automatically plots the actual target data versus the estimated target data from the filter.

The data storage section of the model diagram is for testing purposes only as this process

would be altered in an actual real-time simulation to avoid errors associated with storing

of the immense amount of data.

3. Road Following Filter

Compared with the general filter design described above, the real-time road

following filter design was greatly simplified by the pre-known road equation. This

equation allowed the x, y, and z position coordinates to be combined into one

parameter: ρ . Not only did the road following model appear less cluttered, the C code

was also somewhat simpler since only one calculation was needed in most cases where

three were required before.

a. The True Target Model and PVNT Update Generator

The true target model, PVNT update generator, and PVNT update signal

generator for the road following filter system are identical to the subsystem for the

 25

general filter design shown in Figure 13. The only difference concerning the PVNT

position update is in the optimization function contained in the S-function’s C code:

(1). Optimization Method. While the PVNT update that is entered

into the S-function does not change from the real-time general filter model to the real-

time road following filter model, there is an additional set of calculations that takes place

afterwards. Located in a function declaration in the C code of the S-function, the

optimization loop finds the closest point on the known road equation to the given PVNT

update and sets that point as the new ρ update. The optimization method for the real-

time model replaces the rf_optimise.m script file used in the MATLAB function block

from the non real-time road following model. In order to keep computation time to a

minimum, the optimization function in the S-function C code calculates the distance from

the PVNT coordinate update to set points on the road utilizing a dichotomy algorithm.

This set of equations controls the adjustments made to the boundaries of search for the

minimum distance, proving to be much faster than computing the distance equation for

each point along the road within a set range. This direct search method’s results have a

high order of accuracy while requiring a minimal amount of computation steps.

Following completion of the optimization loop, the new ρ value is outputted to the rest

of the S-function code.

b. The Open Loop Filter

Figure 16. Open loop filter for the road following model

 26

Figure 16 shows the simple open loop integration that calculates the

update for ρ and outputs the results back into the S-function for storage and further use.

c. Overall Real-Time Design and Function with S-Function Block

Figure 17. Road following filter real-time model

There are fewer inputs and outputs for the real-time model than the non

real-time model. While the x, y, and z coordinates are combined into the ρ variable, the

system function is nearly identical to the general filter. The open loop filter function call

block still performs the dead reckoning integration until a PVNT position update is

received and passed through the optimization function. The asynchronous forward Euler

integration takes place in the C code inside the S-function but now with only the ρ

 27

variable requiring integration from time τ to time t. As a result, only the ρ variable is

stored in the buffers before being sent out as the initial condition to the open loop filter as

the process repeats itself.

 28

THIS PAGE INTENTIONALLY LEFT BLANK

 29

IV. SIMULATION AND RESULTS

The purpose of this chapter is to test and compare the results from the developed

real- and non real-time systems. First, different road models used in the simulations are

defined. Next, the simulation parameters for east test set are defined as well as a short

description of the gain values used in the asynchronous constant gain Kalman filters. The

results portion of the chapter begins with simulation data from the non real-time road

following filter using the two different types of integration (using an external Simulink

model file vs. numerical forward Euler integration) discussed at the beginning of Chapter

III. Finally, the real-time general and road following models are tested under a variety of

conditions before the data is plotted and discussed.

A. SIMULATION

Two different road models were developed for simulation to determine the effects

of different road characteristics on the performance of the general and road following

filters. Additionally, the simulation parameters are defined as different values for certain

parameters are needed for different road models.

1. Road Models

Using two road models allows a better comparison between the general and road

following filters on a case-by-case basis. Each road model is created by a system of

equations in the x and y planes, while z is set to zero.

a. Third Order Road Model

The first road model is a third order system based on the set of equations

below:

0
74.9025.00000192.0 23

=
+−=

=

z
y
x

ρρρ

ρ

 (4)

 30

While the non real-time system simply uses an embedded MATLAB

function (as seen in Figure 5) to simulate the road model, the real-time systems are not

able to employ these embedded functions. To reduce the amount of computation time

required during simulation, the road equation is created using Simulink blocks instead.

The subsystem is found in the true target model for both the general and road following

models. Additionally, the subsystem also calculates the derivative of each equation for

use in the T_star variable, which is used in the computation of true and estimated

velocities in the road following filter model.

Figure 18. Third order road equation in Simulink subsystem for real-time

simulation

When simulated for a three minute test, these equations resulted in the

road model depicted in Figure 6.

b. Circular Road Model

It was decided that the second road model should be of a closed loop style

similar to a rectangle or circle. Since the vehicle model uses a constant velocity during

the simulation, a system of equations for a circle of constant radius was developed:

 31

0

sin

2
3sin

=

⎟
⎠
⎞

⎜
⎝
⎛=

⎟
⎠
⎞

⎜
⎝
⎛ ++=

=

z
r

ry

r
rrx

radiusr

ρ

πρ

 (5)

Identical to the third order road model, the circular road model equations

had to be created in Simulink without the use of embedded MATLAB functions. The

circular road equations are not used in the non real-time simulations.

Figure 19. Circular road equation in Simulink subsystem for real-time simulation

The radius of the circle could be set to complete one loop during the

simulation. A longer simulation time was chosen to display how the real-time filter does

not produce errors associated with data overflow during extended tests. In the trials for

this thesis, an hour long simulation was chosen, resulting in a circle radius of 2865 meters

and a road model shown in the figure below:

 32

0 1000 2000 3000 4000 5000 6000
-3000

-2000

-1000

0

1000

2000

3000
Circular Road Model

x coordinate

y
co

or
di

na
te

Figure 20. Circular road model

2. Simulation Parameters

a. Simulation Time

The simulation time is set to 180 seconds for the third order road model

and 3600 seconds for the circular road model. NOTE: The simulations for the non real-

time road following filter only use the third order road model.

b. Sample Time

The sample time used during both the non real-time and real-time

simulations for the Simulink model is 0.1 seconds. Additionally, the sample time for the

general and road following S-function blocks in the real-time simulations is 0.1 seconds.

c. Asynchronous Kalman Filter Gains

The gains k1 and k2 are both set equal to 0.5. While the initial response

time is slightly slower than the response time for higher gain values, trial-and-error

 33

testing for both filters in the non real-time and real-time systems has shown that the lower

gain values are more robust during periods of high PVNT noise or longer PVNT time

delays.

d. Reference Frame

The frame reference used for all simulations is Local Tangent Plane

(LTP).

e. PVNT Parameters

The non real-time road following model used the randomized PVNT delay

time shown in Figure 4 for all simulations.

The real-time general and road following simulations vary the PVNT

parameters over the series of tests. The PVNT position noise is tested at three different

values: ± 1, 5, and 10 meters. The PVNT delay time is also tested for three different

scenarios: a simulated pseudo-random delay covering 1-10 seconds, a repeating 5 second

delay, and a repeating 10 second delay. The simulated pseudo-random delay is shown in

the figure below.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PVNT update delay

time (sec)

up
da

te
 (1

=y
es

, 0
=n

o)

Figure 21. Simulated pseudo-random PVNT update delay

 34

B. RESULTS

The results section is subdivided into the data from the non real-time simulations

followed by the data from the real-time simulations. The non real-time simulations

contain the road following model with the asynchronous integration performed by the

external Simulink model compared to the numerical forward Euler integration method.

The real-time simulations include the general and road following models. Each real-time

model is also put through a series of tests in which certain PVNT parameters are altered,

such as PVNT delay and input noise.

1. Non Real-Time Models

The results for the two non real-time models are divided into three comparisons

each: position, velocity, and ρ. Both models need to show that they are incorporating the

PVNT updates into the estimated target data and effectively tracking the target

throughout the simulation.

 35

a. Road Following Model with Separate Simulink Model
Integration

(1) Position Comparison

Figure 22. Comparison of actual vs. estimated target position – Simulink integration

Figure 22 depicts the results of the actual target position plotted

against the estimated target position from the non real-time road following filter with

external Simulink model integration. It is apparent that the position data is accurate and

the model does not lose track of the target during the simulation.

 36

(2) Velocity Comparison

0 200 400 600 800 1000 1200 1400 1600 1800
4.8

4.85

4.9

4.95

5

5.05

5.1

5.15

Plot of estimated and actual target velocity vs. time for simulation with Simulink integration

time (tenths of sec)

ve
lo

ci
ty

 (m
/s

)

Actual velocity
Estimated velocity

Figure 23. Comparison of actual vs. estimated target velocity – Simulink integration

Figure 23 depicts the results of the actual target position plotted

against the estimated target position from the non real-time road following asynchronous

filter with external Simulink model integration. Since the initial velocity of the target is

assumed to be 0 m/s, the estimated target velocity does not respond until the first PVNT

update. The plot is zoomed in around 5 m/s (the true target velocity) to show how the

estimated target velocity obtains the correct value with the help of the PVNT updates.

 37

(3) Comparison of ρ Values

Figure 24. Comparison of actual vs. estimated ρ value – Simulink integration

The final comparison was between the actual and estimated ρ

values for the target. Correlating with the accuracies found on the position and velocity

comparison plots, the ρ comparison plot shows the same high degree of accuracy.

b. Road Following Model with Numerical Forward Euler
Integration

The results for the non real-time system with the numerical integration

technique are nearly identical to the method using the external Simulink model file.

 38

(1) Position Comparison.

Figure 25. Comparison of actual vs. estimated target position – Euler integration

The figure above shows the actual target position plotted against

the estimated target position for the non real-time road following filter using numerical

forward Euler integration. The plot shows nearly identical results to the simulation with

the double integration performed in the separate Simulink model. The estimated target

position matches the actual target position with a satisfactory degree of accuracy.

 39

(2) Velocity Comparison.

0 200 400 600 800 1000 1200 1400 1600 1800
3

3.5

4

4.5

5

time (tenths of sec)

ve
lo

ci
ty

 (m
/s

)
Plot of estimated and actual target velocity vs. time for simulation with Euler integration

Actual velocity
Estimated velocity

Figure 26. Comparison of actual vs. estimated target velocity – Euler integration

Figure 26 depicts the actual target velocity of 5 m/s compared with

the estimated target velocity from the numerical Euler integration. While the response is

not as fast as the separate Simulink model double integration, the results show that the

steady state error remains at zero and the model effectively computes the estimated target

velocity. If the response were deemed too slow for the environment in which the system

was placed, the gain values (specifically K2) in the integration loop could be adjusted to

compensate.

 40

(3) Comparison of ρ Values.

Figure 27. Comparison of actual vs. estimated ρ velocity – Euler integration

Figure 27 shows the actual target ρ value plotted against the

estimated target ρ value for the simulation using numerical forward Euler integration.

Further confirming that the Euler integration contained in the MATLAB function code is

accurate, the data shows nearly identical results.

Overall, the previous three figures show that the simulation can be

accurately run using numerical forward Euler integration instead of the double integration

process being contained in a separate Simulink model.

 41

2. Real-Time Models

a General Filter

(1) Ideal Conditions. Ideal conditions are defined as a PVNT

noise value covering a range of ± 1 meter and a simulated random PVNT delay.

(a) Third Order Road Model

The first test for the general filter uses the third order road

model under ideal conditions with a 180 second simulation time. After completion of the

simulation, the results are loaded from the .mat file and comparison plots are created.

0 100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500
True vs. estimated position - General filter

x coordinate

y
co

or
di

na
te

True position
Estimated position

Figure 28. General filter position comparison plot – Third order road model – Ideal

conditions

Figure 28 shows the comparison of the target’s true

position versus the general filter’s estimation for the real-time general filter model. The

estimated position from the filter is quite accurate for the straighter portions of the road

model and less accurate for the curved sections. A reason for the decrease in estimation

 42

accuracy is due to the lack of an optimization function in the general filter s-function.

Since the general filter design does include a known road model on which to base the

incoming PVNT position updates, the resulting estimated position is heavily reliant on

PVNT noise. A plot of position estimation error vs. time is shown below:

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350

400
Position error vs. time - General filter

time (sec)

er
ro

r (
m

et
er

s)

Figure 29. General filter position error vs. time – Third order road model

Further confirming the position comparison plot in Figure

28, the error is greatest at the curved sections of the road and least during the straighter

portions.

 43

0 20 40 60 80 100 120 140 160 180
-1

0

1

2

3

4

5

6
True vs. estimated velocity - General filter

Time (sec)

V
el

oc
ity

 (m
/s

)

True velocity
Estimated velocity

Figure 30. General filter velocity comparison plot – Third order road model – Ideal

conditions

The velocity comparison plot shown above shows a small

estimation error following acquisition of the target coinciding with the position plot. The

overall velocity estimation accuracy is good as it stays at or near the target true velocity

of 5 m/s.

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6
Velocity error vs. time - General filter

time (sec)

er
ro

r (
m

/s
)

Figure 31. General filter velocity error vs. time – Third order road model

 44

The above figure shows the relationship between estimated

velocity error from the real-time general filter and simulation time. After the initial target

acquisition, the overall RMS error remains below 0.5 m/s.

(b) Circular Road Model

The circular road model simulation is run for one hour of

simulation time, allowing the target model to complete one loop of the circular track.

-1000 0 1000 2000 3000 4000 5000 6000
-3000

-2000

-1000

0

1000

2000

3000
True vs. estimated position - General filter

x coordinate

y
co

or
di

na
te

True position
Estimated position

Figure 32. General filter position comparison plot – Circular road model – Ideal

conditions

The position comparison plot for the circular road model

appears to be much better than the third order road model. One reason for this involves

the fact that the target is following a path that does not include any abrupt changes in

curvature. Instead the target is engaged in one constant, gradual turn and the dead-

reckoning portion of the real-time general filter is able to accurately follow the vehicle’s

movement.

 45

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

25

30

35

40

45

50
Position error vs. time - General filter

time (sec)

er
ro

r (
m

et
er

s)

Figure 33. General filter position error vs. time – Circular road model

The real-time general filter is much more accurate for the

circular road model than it is for the third order road model as shown in the above figure.

The RMS position error is rarely above five meters and is centered at around one meter

error due mainly to PVNT noise.

 46

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
True vs. estimated velocity - General filter

Time (sec)

V
el

oc
ity

 (m
/s

)

True velocity
Estimated velocity

Figure 34. General filter velocity comparison plot – Circular road model – Ideal

conditions

The velocity comparison plot for the circular road model is

very similar to the velocity plot for the third order road model. The results from the real-

time general filter show a fairly accurate estimated velocity that never strays above 5.5

m/s or below 4.75 m/s.

 47

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
Velocity error vs. time - General filter

time (sec)

er
ro

r (
m

/s
)

Figure 35. General filter velocity error vs. time – Circular road model

The estimated velocity error plot coincides with the

velocity comparison plot for the circular road model. The velocity estimation performed

by the real-time general filter is slightly more accurate for the circular road model than it

is for the third order road model with a lower RMS error value over the system

simulation time.

(2) PVNT Update Delay Variance. The next testing phase for

the real-time general filter is to alter the delay time from the PVNT update signal

subsystem to view the effects on target motion estimation. Instead of using the simulated

pseudo-random update signal, a signal generator block is used to simulate a repeating five

and ten second PVNT position update delay.

(a) Third Order Road Model

The first simulation run involved a repeating PVNT update

delay of five seconds.

 48

0 100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500
True vs. estimated position - General filter

x coordinate

y
co

or
di

na
te

True position
Estimated position

Figure 36. General filter position comparison plot – Third order road model – 5

second PVNT delay

Figure 36 shows the effects of a repeating five second

PVNT delay on the general filter model. The result of PVNT updates arriving once

every five seconds slightly decreases the estimated target position accuracy, especially

around the areas of greater curvature in the road model. The error increases near the end

of the simulation due to the exponential road profile equations. Typically, an update

with a shorter delay time allows the model to correct itself to be closer to the actual road

model in between the larger delay times of five seconds or greater. The position

accuracy therefore suffers without the less delayed PVNT updates to fill in the gaps.

 49

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6
True vs. estimated velocity - General filter

Time (sec)

V
el

oc
ity

 (m
/s

)

True velocity
Estimated velocity

Figure 37. General filter velocity comparison plot – Third order road model – 5

second PVNT delay

The velocity estimation plot shows little or no change from

the random PVNT delay times. The real-time general filter remains fairly accurate with a

slight bias due to the inputted PVNT noise.

Next, the real-time general filter using the third order road

model is subjected to a repeating ten second PVNT update delay. Based on the PVNT

background information, a ten second delay is the longest expected delay associated with

the PVNT computation time.

0 100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500
True vs. estimated position - General filter

x coordinate

y
co

or
di

na
te

True position
Estimated position

Figure 38. General filter position comparison plot – Third order road model – 10

second PVNT delay

 50

The repeating ten second PVNT update delay greatly

decreases the accuracy of the general filter model. The trend of the filter accuracy

declining during areas of increased curvature turns along the road continues here as the

greatest variances in estimated position accuracy are at the first turn in the third order

road model.

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6
True vs. estimated velocity - General filter

Time (sec)

V
el

oc
ity

 (m
/s

)

True velocity
Estimated velocity

Figure 39. General filter velocity comparison plot – Third order road model – 10

second PVNT delay

The velocity comparison plot for the ten second PVNT

update delay shows similar results when compared to the five second delay test. After the

target acquisition, the filter shows good velocity estimation close to the target’s true

velocity of five meters per second.

 51

(b) Circular Road Model

The varying simulation parameters that were used for the

third order road model are also used for the circular road model. The repeating five

second PVNT delay results are discussed first.

-1000 0 1000 2000 3000 4000 5000 6000
-3000

-2000

-1000

0

1000

2000

3000
True vs. estimated position - General filter

x coordinate

y
co

or
di

na
te

True position
Estimated position

Figure 40. General filter position comparison plot – Circular road model – 5 second

PVNT delay

The position comparison plot for the repeating five second

PVNT delay simulation shows an estimated position that closely matches the true target

position. It is necessary to view the position error vs. time plot, though, to see the true

relationship due to the large sample time and axes scales.

 52

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60
Position error vs. time - General filter

time (sec)

er
ro

r (
m

et
er

s)

Figure 41. General filter position error plot – Circular road model – 5 second PVNT

delay

As shown by the plot, the estimated position error from the

real-time general filter remains largely unchanged with a five second PVNT delay when

compared to the same trial under ideal conditions. After the initial acquisition period, the

RMS error pertaining to the estimated position remains under five meters.

 53

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
True vs. estimated velocity - General filter

Time (sec)

V
el

oc
ity

 (m
/s

)

True velocity
Estimated velocity

Figure 42. General filter velocity comparison plot – circular road model – 5 second

PVNT delay

The velocity comparison plot shows an estimated velocity

that is only slightly off of the true target’s five meter per second velocity. Based on the

data from Figures 40, 41, and 42 and the circular road model simulation under ideal

conditions, the real-time general filter does not lose any accuracy with the repeating five

second PVNT delay.

Like the third order road model, the system using the

circular road model is also tested at the upper limit of the expected PVNT delay:

 54

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60
Position error vs. time - General filter

time (sec)

er
ro

r (
m

et
er

s)

Figure 43. General filter position error plot – Circular road model – 10 second

PVNT delay

The position error plot for the ten second PVNT delay

simulation shows a slight increase in the estimated position error from the five second

delay test. The plot in Figure 43 shows a peak error value of just less than eight meters

compared to a maximum error of five meters for the five second PVNT delay error plot.

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
True vs. estimated velocity - General filter

Time (sec)

V
el

oc
ity

 (m
/s

)

True velocity
Estimated velocity

Figure 44. General filter velocity comparison plot – Circular road model – 10 second

PVNT delay

 55

The velocity comparison plot actually shows a slightly

better target velocity estimate than the repeating five second delay simulation. This is one

example of how the shape of the road affects the results of the simulation. While the third

order road model showed no change in velocity estimation between the five and ten

second PVNT delay tests, the circular road model actually showed an improvement due

to its shape.

(3) PVNT Noise Variance. The final testing phase for the real-

time general filter involved setting the PVNT delay back to the simulated pseudo-random

delay time and adjusting the random number generator block controlling PVNT noise in

the true target model subsystem block. While the ideal conditions had a PVNT noise

value of ± 1 meter, the noise would be increased to ± 5 and ± 10 meters between the

simulations.

(a) Third Order Road Model

0 100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500
True vs. estimated position - General filter

x coordinate

y
co

or
di

na
te

True position
Estimated position

Figure 45. General filter position comparison plot – Third order road model – ± 5 m

PVNT noise

 56

First, the real-time general filter model is tested with a ± 5

meter PVNT noise and the results appear quite similar to the ideal conditions test. When

comparing the position plots, a slight decrease in estimation accuracy is noticed as the

position updates do not match up with the target’s true position due to the extra PVNT

noise.

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6
True vs. estimated velocity - General filter

Time (sec)

V
el

oc
ity

 (m
/s

)

True velocity
Estimated velocity

Figure 46. General filter velocity comparison plot – Third order road model – ± 5 m

PVNT noise

The effects of the added PVNT noise are more noticeable

in the velocity comparison plot due to the larger axes in the position comparison plot. The

deviation between the true and estimated velocity is greater than the velocity difference

found in the ideal conditions test.

The PVNT noise is then doubled to ± 10 m for the final set

of tests for the third order road model using the real-time general filter design. This is

very impractical as other filter designs with PVNT updates can boast ten meter accuracy,

but it is important to show how much the filter can attempt to compensate to the inputted

error [6].

 57

0 100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500
True vs. estimated position - General filter

x coordinate

y
co

or
di

na
te

True position
Estimated position

Figure 47. General filter position comparison plot – Third order road model – ± 10

m PVNT noise

Even with a PVNT noise value having a ten meter variance

in either direction, the real-time general filter shows little change from the five meter

PVNT noise simulation. While the overall accuracy does have room for improvement,

there is minimal change in position estimation accuracy between the five and ten meter

PVNT noise tests.

 58

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6
True vs. estimated velocity - General filter

Time (sec)

V
el

oc
ity

 (m
/s

)

True velocity
Estimated velocity

Figure 48. General filter velocity comparison plot – Third order road model – ± 10

m PVNT noise

The velocity comparison plot shows an estimated steady

state velocity that is always within 0.6 m/s of the true target velocity. While the ± 5 meter

test had a maximum error of 0.35 m/s, the test with the doubled PVNT input error shows

less than a twofold increase in velocity estimation error.

(b) Circular Road Model

The circular road model is put through the same tests for

PVNT noise variance as the third order road model for the real-time general filter system.

 59

-1000 0 1000 2000 3000 4000 5000 6000
-3000

-2000

-1000

0

1000

2000

3000
True vs. estimated position - General filter

x coordinate

y
co

or
di

na
te

True position
Estimated position

Figure 49. General filter position comparison plot – Circular road model – ± 5 m

PVNT noise

The added PVNT noise seems to have a minimal effect on

the real-time general filter running the circular road model but a look at the position error

plot is required due to the large axes scale.

0 500 1000 1500 2000 2500 3000 3500
0

10

20

30

40

50

60
Position error vs. time - General filter

time (sec)

er
ro

r (
m

et
er

s)

Figure 50. General filter position error plot – Circular road model – ± 5 meter

PVNT noise

 60

Figure 50 shows that the added noise from the PVNT input

results in an estimated position error along the circular road model that is more than

double that of the ideal conditions test. The real-time general filter shows just how

dependent it is on the accuracy of the PVNT position update since it does not utilize the

road equation in its calculations.

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

4

5

6
True vs. estimated velocity - General filter

Time (sec)

V
el

oc
ity

 (m
/s

)

True velocity
Estimated velocity

Figure 51. General filter velocity comparison plot – Circular road model – ± 5 meter

PVNT noise

The velocity comparison plot shows an increase as well due

to the extra PVNT input noise. There is quite a large change when compared to the

velocity plot for the circular model under ideal conditions. While the ideal test resulted

in a maximum estimated velocity of 5.2 m/s, the test with the PVNT noise pushed the

maximum estimated velocity to over 5.5 m/s. The modular shape of the velocity

estimation is due to the shape of the road profile. There are certain points in the model

where there is only velocity error in the x or y direction as opposed to both the x and y

directions.

 61

Finally, the real-time general filter design using the circular

road model is simulated with a ± 10 meter PVNT input noise and the results are

analyzed.

0 500 1000 1500 2000 2500 3000 3500
0

10

20

30

40

50

60
Position error vs. time - General filter

time (sec)

er
ro

r (
m

et
er

s)

Figure 52. General filter position error plot – Circular road model – ± 10 meter

PVNT noise

As expected, the RMS error increased with the doubled

PVNT noise as shown in Figure 52. The peak error is just over 27 meters at around 1660

seconds into the simulation.

 62

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

4

5

6
True vs. estimated velocity - General filter

Time (sec)

V
el

oc
ity

 (m
/s

)

True velocity
Estimated velocity

Figure 53. General filter velocity comparison plot – Circular road model – ± 10

meter PVNT noise

The velocity comparison plot for the real-time general filter

during this trial shows a maximum absolute error of around one meter per second. The

figure further shows that the velocity error has a direct relationship to PVNT input error.

b. Road Following Filter

The system parameters for the tests involving the real-time road following

filter are identical to those performed with the real-time general filter

(1) Ideal Conditions. Ideal conditions are defined as a PVNT

noise value covering a range of ± 1 meter and a simulated random PVNT delay.

 63

(a) Third Order Road Model

0 100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500
True vs. estimated position - Road following filter

x coordinate

y
co

or
di

na
te

True position
Estimated position

Figure 54. Road following filter position comparison plot – Third order road model

– Ideal conditions

The results for the real-time road following filter using the

third order road model under ideal conditions appear exponentially more accurate than

the position comparison plot for the real-time general filter design under the same

conditions. To confirm these results, the position error vs. time plot is examined:

 64

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350

400
Position error vs. time - Road following filter

time (sec)

er
ro

r (
m

et
er

s)

Figure 55. Road following filter position error plot – Third order road model – Ideal

conditions

The position error plot shows that after the initial target

acquisition time, the real-time filter is able to estimate a target position that has less than

a ten meter deviation from the actual position. During the straighter sections of the road,

the position estimation is even more accurate with the error dropping to less than one

meter.

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6
True vs. estimated velocity - Road following filter

Time (sec)

V
el

oc
ity

 (m
/s

)

True velocity
Estimated velocity

Figure 56. Road following filter velocity comparison plot – Third order road model

– Ideal conditions

 65

The velocity comparison plot is actually quite similar to the

results from the real-time general filter. The low steady state error for estimated velocity

is confirmed by Figure 57:

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6
Velocity error vs. time - Road following filter

time (sec)

er
ro

r (
m

/s
)

Figure 57. Road following filter velocity error plot – Third order road model – Ideal

conditions

The velocity error plot is nearly identical to the real-time

general filter velocity error plot for the same conditions. Following the target acquisition

period, the absolute velocity error remains less than 0.2 m/s.

Additionally, the road following filter utilizes the road

parameter ρ in the equations that track target movement. This allows the variance in the

estimated and actual ρ value to be plotted as well. Throughout all of the tests, the true

target ρ value linearly increases with time as seen in the next figure.

 66

0 20 40 60 80 100 120 140 160 180
0

100

200

300

400

500

600

700

800

900

1000
True vs. estimated ro value - Road following filter

Time (sec)

ro
 v

al
ue

True ro
Estimated ro

Figure 58. Road following filter ρ comparison plot – Third order road model –

Ideal conditions

The difference in the estimated and actual ρ value is kept

to a minimum by the real-time road following filter. The system is able to accurately

estimate the ρ value through the asynchronous forward Euler integration process

coupled with the optimized PVNT position input.

(c) Circular Road Model

0 1000 2000 3000 4000 5000 6000
-3000

-2000

-1000

0

1000

2000

3000
True vs. estimated position - Road following filter

x coordinate

y
co

or
di

na
te

True position
Estimated position

Figure 59. Road following filter position comparison plot – Circular road model –

Ideal conditions

 67

The position estimation for the real-time road following

filter using the circular road model appears very accurate and the position error vs. time

plot is examined:

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60
Position error vs. time - Road following filter

time (sec)

er
ro

r (
m

et
er

s)

Figure 60. Road following filter position error plot – Circular road model – Ideal

conditions

The real-time road following filter with its added PVNT

optimization function decreases the estimated error during the simulation. There is a

noticeable difference when compared to the general filter simulation using the circular

road model under ideal conditions. While the real-time general filter had a maximum

absolute error of five meters, the real-time road following filter only had a maximum

absolute error of three meters.

 68

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
True vs. estimated velocity - Road following filter

Time (sec)

V
el

oc
ity

 (m
/s

)

True velocity
Estimated velocity

Figure 61. Road following filter velocity comparison plot – Circular road model –

Ideal conditions

The velocity comparison plot shows the estimated velocity

using the real-time road following filter to be very similar to the results from the real-

time general filter. It is noticed that both filters have a slight steady state velocity error

during the simulations even though the precision is good.

 69

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
Velocity error vs. time - Road following filter

time (sec)

er
ro

r (
m

/s
)

Figure 62. Road following filter velocity error plot – Circular road model – Ideal

conditions

The velocity error plot for the real-time road following

filter using the circular road model is nearly identical to the third order road model. The

maximum absolute estimated velocity error is never more than 0.2 m/s following the

target acquisition time.

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 True vs. estimated ro value - Road following filter

Time (sec)

ro
 v

al
ue

True ro
Estimated ro

Figure 63. Road following filter ρ comparison plot – Circular road model – Ideal

conditions

 70

The ρ comparison plot coincides with the estimated

position and velocity plots, showing minimal estimation error throughout the hour long

simulation.

(2) PVNT Update Delay Variance. The next testing phase for

the real-time road following filter is to adjust the delay time from the PVNT update

signal subsystem. Instead of using the simulated pseudo-random update signal, a signal

generator block is used to simulate a repeating five and ten second PVNT position update

delay.

(a) Third Order Road Model

0 100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500
True vs. estimated position - Road following filter

x coordinate

y
co

or
di

na
te

True position
Estimated position

Figure 64. Road following filter position comparison plot – Third order road model

– 5 second PVNT delay

The expected PVNT delay can be as long as ten seconds so

the five second PVNT delay does not affect the position tracking results. The velocity

comparison plot below depicts similar results:

 71

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6
True vs. estimated velocity - Road following filter

Time (sec)

V
el

oc
ity

 (m
/s

)

True velocity
Estimated velocity

Figure 65. Road following filter velocity comparison plot – Third order road model

– 5 second PVNT delay

Figure 65 shows the estimated target velocity from the real-

time road following filter plotted against the actual target velocity. The results are nearly

identical to the ideal conditions plot shown in Figure 56.

0 20 40 60 80 100 120 140 160 180
0

100

200

300

400

500

600

700

800

900

1000
True vs. estimated ro value - Road following filter

Time (sec)

ro
 v

al
ue

True ro
Estimated ro

Figure 66. Road following filter ρ comparison plot – Third order road model – 5

second PVNT delay

 72

The ρ comparison plot depicts an estimated ρ value that

achieves a near zero steady state error. The repeating five second PVNT delay can be

viewed during the first 30 seconds of the test as each update brings the estimated ρ value

closer to the target’s true ρ value.

The next step involves doubling the PVNT delay to ten

seconds for the third order road model.

0 100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500
True vs. estimated position - Road following filter

x coordinate

y
co

or
di

na
te

True position
Estimated position

Figure 67. Road following filter position comparison plot – Third order road model

– 10 second PVNT delay

The position comparison plot for the repeating ten second

PVNT delay test shows the robustness of the real-time road following filter with longer

delay times. As long as the inputted PVNT update has little noise, the optimization

function ensures the accuracy of the new ρ value sent to the asynchronous forward Euler

integration function. This results in a more accurate target tracking model even though

the frequency of the updates has decreased.

 73

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6
True vs. estimated velocity - Road following filter

Time (sec)

V
el

oc
ity

 (m
/s

)

True velocity
Estimated velocity

Figure 68. Road following filter velocity comparison plot – Third order road model

– 10 second PVNT delay

The velocity comparison plot, like the position comparison

plot, shows little or no change from the additional five seconds of PVNT update delay.

The maximum absolute error of the velocity estimation remains the same following target

acquisition.

0 20 40 60 80 100 120 140 160 180
0

100

200

300

400

500

600

700

800

900

1000
True vs. estimated ro value - Road following filter

Time (sec)

ro
 v

al
ue

True ro
Estimated ro

Figure 69. Road following filter ρ comparison plot – Third order road model – 10

second PVNT delay

 74

The ρ comparison plot in the figured above is best viewed

next to the ρ comparison plot for the repeating five second PVNT delay test. Even

though the delay for the position updates is twice as long, the accuracy of the ρ estimate

is aided by the optimization routine in the S-function. While the settling time increases

slightly, the overall steady state accuracy is not affected by the increased PVNT delay.

(b) Circular Road Model

The same PVNT delay trials are performed with the real-

time road following filter using the circular road model.

Initial impressions of the position comparison plot for the

circular road model trial with a repeating five second PVNT update delay are good but

the depiction of the estimated position error plot is shown below due to the large sample

time and figure axes.

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60
Position error vs. time - Road following filter

time (sec)

er
ro

r (
m

et
er

s)

Figure 70. Road following filter position error plot – Circular road model – 5 second

PVNT delay

 75

The plot of estimated position error vs. time shows the

results of the simulation with a repeating five second PVNT update delay are no different

from the simulation under ideal conditions. The maximum absolute position errors are

identical between the two trials as the repeating delay shows no effect on the road

following filter using the circular road model.

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
True vs. estimated velocity - Road following filter

Time (sec)

V
el

oc
ity

 (m
/s

)

True velocity
Estimated velocity

Figure 71. Road following filter velocity comparison plot – Circular road model – 5

second PVNT delay

The velocity comparison plot shown above for the real-time

road following filter mimics the results for the position error comparison plot. No change

is seen between the velocity estimation accuracy between the repeating five second delay

and ideal conditions trials.

The next step involves doubling the PVNT delay to ten

seconds for the circular road model.

 76

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60
Position error vs. time - Road following filter

time (sec)

er
ro

r (
m

et
er

s)

Figure 72. Road following filter position error plot – Circular road model – 10

second PVNT delay

Figure 72 depicts the difference between the estimated and

actual target position with a repeating ten second PVNT delay. Even when the PVNT

delay is set at its upper expected limit, the real-time model only loses one meter of

accuracy during the hour long trial. Once again, the addition of the optimization function

to the real-time road following filter’s code aids the robustness of the system with respect

to longer periods of time between PVNT position updates.

 77

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
True vs. estimated velocity - Road following filter

Time (sec)

V
el

oc
ity

 (m
/s

)

True velocity
Estimated velocity

Figure 73. Road following filter velocity comparison plot – Circular road model – 10

second PVNT delay

The velocity comparison plot for the real-time road

following filter with a repeating ten second delay also shows no decrease in accuracy

throughout the trial. It is interesting to note that, similar to the same trial for the real-time

general filter, the steady state error of the estimated velocity actually decreases with the

increase in PVNT delay time. While each real-time filter’s performance is mainly due to

the code within their respective S-functions, the shape of the road model also plays a role

in the accuracy of the target motion estimation.

(3) PVNT Noise Variance. The final testing phase for the real-

time road following filter involves setting the PVNT delay back to the simulated pseudo-

random update and adjusting the random number generator block controlling PVNT

noise in the true target model subsystem block. While the ideal conditions had a PVNT

noise value of ± 1 meter, the noise would be increased to ± 5 and ± 10 meters.

 78

(a) Third Order Road Model

0 100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500
True vs. estimated position - Road following filter

x coordinate

y
co

or
di

na
te

True position
Estimated position

Figure 74. Road following filter position comparison plot – Third order road model

– ± 5 m PVNT noise

Figure 74 shows that the real-time road following filter is

still able to quite accurately track the target model with the additional PVNT input noise.

The five meter variance is not enough to see any noticeable differences in position

estimation precision.

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6
True vs. estimated velocity - Road following filter

Time (sec)

V
el

oc
ity

 (m
/s

)

True velocity
Estimated velocity

Figure 75. Road following filter velocity comparison plot – Third order road model

– ± 5 m PVNT noise

 79

Similar to the position comparison plot, the figure above

shows a very slight variance in estimated velocity error during the curved portions of the

road. The small change in velocity estimation accuracy, however, does not seriously

affect the performance of target tracking.

0 20 40 60 80 100 120 140 160 180
0

100

200

300

400

500

600

700

800

900

1000
True vs. estimated ro value - Road following filter

Time (sec)

ro
 v

al
ue

True ro
Estimated ro

Figure 76. Road following filter ρ comparison plot – Circular road model – ± 5 m

PVNT noise

The ρ comparison plot shows that the overall accuracy of

the real-time filter remains unchanged except for slight errors around one and two

minutes into the simulation. When compared to the position plot, it is found that these

times correspond with the major areas of greatest curvature in the road model.

The PVNT noise is then doubled to ± 10 m for the final set

of tests for the third order road model using the real-time road following filter design.

 80

0 100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500
True vs. estimated position - Road following filter

x coordinate

y
co

or
di

na
te

True position
Estimated position

Figure 77. Road following filter position comparison plot – Third order road model

– ± 10 m PVNT noise

The effects of the added PVNT noise still not quite

noticeable in the position comparison plot even after the maximum variance of the PVNT

input error is doubled. The system still appears to track the target without a significant

drop in accuracy.

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6
True vs. estimated velocity - Road following filter

Time (sec)

V
el

oc
ity

 (m
/s

)

True velocity
Estimated velocity

Figure 78. Road following filter velocity comparison plot – Third order road model

– ± 10 m PVNT noise

 81

The velocity comparison plot with the results from the trial

with ± 10 meters of PVNT noise finally shows the effects on the system. The

optimization function located in the road following filter’s C code takes the x, y, z

coordinate input from the PVNT update and finds the closest point on the pre-known road

model to the PVNT input. The optimization loop ensures that the new position update lies

along the road model by converting the new x, y, z coordinates into a ρ value, but it

cannot guarantee the accuracy of the new estimated ρ value. Therefore, while the

robustness of the real-time road following filter with respect to PVNT noise is better than

the real-time general filter, the target motion estimation accuracy still decreases with

larger amounts of input noise.

0 20 40 60 80 100 120 140 160 180
0

100

200

300

400

500

600

700

800

900

1000
True vs. estimated ro value - Road following filter

Time (sec)

ro
 v

al
ue

True ro
Estimated ro

Figure 79. Road following filter ρ comparison plot – Circular road model – ± 10 m

PVNT noise

The findings from the previous figures are confirmed with

the ρ comparison plot for the ± 10 m PVNT noise trial. The deviations in estimated and

true target ρ values are more noticeable than in the previous test. The optimization loop

in the S-function code is able to greatly reduce error, but it cannot eliminate all of the

variation between the actual ρ value and the resulting ρ value from the PVNT position

update.

 82

(b) Circular Road Model

The same test parameters are used with the circular road

model as with the third order road model.

0 500 1000 1500 2000 2500 3000 3500
0

5

10

15

20

25

30

35

40

45

50
Position error vs. time - Road following filter

time (sec)

er
ro

r (
m

et
er

s)

Figure 80. Road following filter position error plot – Circular road model – ± 5 m

PVNT noise

The position error plot for the circular road model shows a

large increase in RMS error from the ideal conditions test. While the RMS error for the

ideal conditions trial is around two meters, the RMS error shown in Figure 81 is roughly

seven meters.

 83

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

4

5

6
True vs. estimated velocity - Road following filter

Time (sec)

V
el

oc
ity

 (m
/s

)

True velocity
Estimated velocity

Figure 81. Road following filter velocity comparison plot – Circular road model –

± 5 m PVNT noise

The position comparison plot directly coincides with the

velocity comparison plot. The precision of the velocity estimates increase at around 1250

and 3000 seconds into the simulation, resulting in better position estimation.

The PVNT noise is then doubled to ± 10 m for the final set

of tests for the circular road model using the real-time road following filter design.

 84

0 500 1000 1500 2000 2500 3000 3500
0

5

10

15

20

25

30

35

40

45

50
Position error vs. time - Road following filter

time (sec)

er
ro

r (
m

et
er

s)

Figure 82. Road following filter position error plot – Circular road model – ± 10 m

PVNT noise

The extra five meters of PVNT deviation greatly affect the

position estimation results of the real-time road following filter for the circular road

model. The peak absolute error value is only two meters less than the peak absolute error

value for the same test parameters using the real-time general filter design. The RMS

error, however, is much less for the real-time road following filter.

 85

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

4

5

6
True vs. estimated velocity - Road following filter

Time (sec)

V
el

oc
ity

 (m
/s

)

True velocity
Estimated velocity

Figure 83. Road following filter velocity comparison plot – Circular road model –

± 10 m PVNT noise

The velocity comparison plot for the real-time road

following filter is nearly identical to the velocity plot for the real-time general filter

shown in Figure 54. The likeness of the two plots is a perfect example of how real-time

road following filter’s robustness depends not only on inputted errors, but the road model

as well.

c. Additional Road Models and Worst Case Scenarios

The previous examples of the real-time models show that the accuracy of

the target motion estimation is greatly affected by the amount of curvature present in the

road model. The road following filter design is able to compensate for higher order road

models and greater curvatures than the general filter design due to the fact that the road

equations are used in the filter code. To show just how much of a difference there is

 86

between the road following and general filters, the real-time simulations are run under

ideal conditions using four road models with increasing amounts of curvature. The

equations for the road models are shown below:

0
x
z

ρ=
=

 for all road models

Road model 1: 2.7922222y x= (6)

Road model 2: 3 20.0000192 0.025 9.74y x x x= − + (7)

Road model 3: 3 20.000033642291 0.0444961 15.5884511y x x x= − + (8)

Road model 4: (9)
10 5 7 4 5 3 21.98707 10 3.0300064 10 9.832032 10 0.0219297 11.64832y x x x x x− − −= − + − − +i i i

The four road models are plotted in the following figure to show the

amount of curvature for each set of equations.

0 100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500

3000

3500

4000

x coordinate

y
co

or
di

na
te

Extra road models

Model 1
Model 2
Model 3
Model 4

Figure 84. Road model comparison

 87

The real-time road following and general filters are both run for three

minute simulations and their position estimation, position error, and velocity error plots

are directly compared.

(1) Road Model 1. The first road model depicts a linearly

dependent first order plot where there is no curvature in the shape of the road.

0 100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500

3000

x coordinate

y
co

or
di

na
te

Filter position estimation comparison - Model 1

Road model
Road following filter
General filter

Figure 85. Filter position estimation comparison – Model 1

As expected, there is no difference between the estimated positions

from the real-time road following and general filters. This is a rare situation in which the

dead reckoning style integration is enough to provide an accurate position estimate for

both filters throughout the simulation.

 88

Figure 86. Filter estimation error comparison – Model 1

The error comparison plot between the two filters confirms the results from the

position estimation plot. The estimated velocity and position values from the filters are

nearly identical throughout the simulation.

(2) Road Model 2. The second road model is the same system

of equations used as the “third order road model” in the previous chapters. It is a third

order system with a modest amount of curvature throughout the simulation run time.

0 100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500

x coordinate

y
co

or
di

na
te

Filter position estimation comparison - Model 2

Actual road model
Road following filter
General filter

Figure 87. Filter position estimation comparison – Model 2

 89

The figure above shows the amount of deviation the third order

equation has between the results of the two filters. During the periods of maximum

curvature, specifically around x=250 and x=700, the real-time general filter is noticed

lagging in its position estimates. The real-time road following filter, on the other hand,

displays an excellent target approximation compared to the actual road model throughout

the test.

Figure 88. Filter estimation error comparison – Model 2

The comparison of estimated velocity error is quite similar

between the two filters while the estimated position error shows a huge difference.

Following the target acquisition portion of the run, the errors in estimated velocity stay

below 0.25 m/s.

(3) Road Model 3. The next road model tested is a third order

system that has an increased amount of curvature when compared to the second road

model.

 90

0 100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500

x coordinate

y
co

or
di

na
te

Filter position estimation comparison - Model 3

Road model
Road following filter
General filter

Figure 89. Filter position estimation comparison – Model 3

The third road model shows the real-time road following filter still

performing quite well when compared to the actual target track. The dead reckoning

estimation from the real-time general filter, however, is worse than the previous road

model test. The sections of sharp curvature in the road create large position errors in the

real-time general filter’s estimation.

Figure 90. Filter estimation error comparison – Model 3

 91

Despite the large differences in the position error plot, the velocity

error comparison figure shows that the real-time road following filter provides only a

slightly better estimation than the real-time general filter.

(4) Road Model 4. The final road model tested is meant to

greatly increase the amount of curvature seen in the previous models. This last road

model features a fifth order system of equations to compare the results from the two

filters.

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

x coordinate

y
co

or
di

na
te

Filter position estimation comparison - Equation 4

Road model
Road following filter
General filter

Figure 91. Filter position estimation comparison – Model 4

The extreme amount of curvature present in the fifth order road

model clearly decreases the accuracy of the position estimates from the real-time general

filter. The estimated target track is far outside the actual target track, especially

noticeable around the final, sharp turn at x=850. The real-time road following filter, on

the other hand, seems to be completely unaffected by the additional turns in the road

model as the robustness of the filter to road model curvature is displayed.

 92

Figure 92. Filter estimation error comparison – Model 4

Similar to the previous trials, the velocity estimation errors are

nearly equal between the two filters while the position error plots display large variances.

Despite the similarities on the velocity plot, though, the real-time road following filter

proves that it is a much better predictor of target motion than the real-time general filter

for road models with varying amounts of curvature.

(5) Worst case scenario. A worst case scenario is chosen to

show that even though the real-time road following model shows overall great target

motion estimation, there are still limits to the amount of PVNT input noise and delay that

it can overcome. To show a true failure of the filter, the PVNT input delay is set to 50

seconds for the real-time road following model using the circular road model.

 93

0 1000 2000 3000 4000 5000 6000
-3000

-2000

-1000

0

1000

2000

3000
True vs. estimated position - Road following filter

x coordinate

y
co

or
di

na
te

True position
Estimated position

Figure 93. Position comparison plot – Worst case scenario

As shown in Figure 93, the estimated position of the target model

is very poor. The 50 second PVNT delay is simply too long for the filter to accurately

predict target motion.

Figure 94. Filter estimation error comparison – Worst case scenario

 94

The velocity error plot shows a steady state error of around 130

m/s while the position error plot depicts nearly a five kilometer position estimation error.

Remembering that the circular path is only 2865 meters in radius, these results illustrate a

complete failure of the real-time road following model.

 95

V. CONCLUSION AND RECOMMENDATIONS

A. CONCLUSIONS

The overall goals set for this thesis were accomplished. The non real-time road

following model was successfully developed and tested to ensure proper function. The

problems associated with converting the non real-time systems to real-time were solved

with the use of buffers and the implementation of S-function C code. Finally, the real-

time general and road following systems were successfully modeled and simulated. All of

the results for the real-time models were then compiled and analyzed to provide a definite

set of conclusions.

Throughout the simulations in the thesis, the road following filter design shows

that it is a better target motion estimator than the general filter design. The simulations

display the relative robustness of the real-time road following model to several forms of

PVNT input errors while the real-time general filter model results were less accurate.

Additionally, the ability of the real-time road following model to provide accurate

position and velocity estimation results along simulated roads of increasing curvature

were shown. The real-time general filter faltered on road models containing larger

amounts of curvature as the dead reckoning integration without the optimization

technique was not enough to give accurate results. Finally, while the real-time road

following filter performed well in all the practical simulations put forth in the thesis, it

was shown that the filter can fail in a worst case scenario involving exceptionally large

PVNT input errors.

B. RECOMMENDATIONS

There are quite a few opportunities for further work on the subject of this thesis.

The methods used are a solid foundation on which improvements can be made. One

simple test that can be worked on includes adjusting the k1 and k2 gain values for the

asynchronous integration loop. Similar to a proportional compensator, lower gain values

result in smaller overshoot with slower response time while higher gain values improve

 96

response time but increase overshoot. Some tweaking may be required to find the best

compromise for filter performance that will more accurately represent a field testing

environment.

Another possible improvement concerning filter accuracy can be made by

examining the asynchronous filter integration process. Currently, the model utilizes

forward Euler integration to cycle back from the delayed PVNT update to the current

simulation time. Future work may involve using trapezoidal or higher order of integration

to see if this improves overall target motion estimation accuracy.

Other areas for immediate work include improvements to the S-function code to

ensure the minimal amount of required computation time along with storing and plotting

the data from each iteration of the asynchronous filter. Further testing can provide results

with different types of road models to see what direct relationships exist between road

models and filter performance.

Eventually, the simulated real time system can be loaded into hardware and

bench-tested. The final goal is to have a program that is able to run in real time on an

unmanned aerial vehicle during field testing.

 97

APPENDIX

This appendix presents the ANSI C code for the general and road following filter

S-functions as well as a manual explaining the programs’ operation.

The purpose of the S-function is to provide an alternative method to MATLAB

functions that will allow the system to perform real-time simulations. Each filter design

performs a number of different operations with the goal of providing accurate target

motion estimation. The filters receive delayed PVNT updates, perform asynchronous

forward Euler integration from the update time to current time, and then output the results

to the open loop filter. The open loop filter then runs until the next PVNT update arrives.

A. GENERAL FILTER

1. Manual

File: s_filter_general.c

Lines 26-49

Complete basic program initializations, library calls, and global variable input.

Lines 26 and 27

Designate the file name and indicate that the file is in C code, to be converted into

MEX format and run in MATLAB.

Lines 29-34

Make all the necessary library calls that are required in the program.

Lines 40 and 41

Take in the two S-function parameters, MAX_DELAY and TIME_STEP, from the

S-function block in the Simulink model. MAX_DELAY is the maximum amount

of expected delay in between PVNT updates while TIME_STEP is the time step to

be used by the C code. NOTE: The time step parameter value must match the

discrete time step value found on the simulation parameters menu in Simulink.

 98

Lines 45 and 46

Convert the parameters into “real_T” format for use in numerical calculations

later.

Line 49

Defines the global variable MAX_INDEX, used to ensure that buffer overflow

does not occur.

Euler_integration function

Line 58

Lists the inputs to the function along with buffers marked by an asterisk in front

of their names.

Lines 65-72

Perform forward Euler integration for the x, y, and z variables, assigning the new

position and velocity values to the buffers beginning with “temp.”

mdlInitializeSizes

Sets up the sizes of the various vectors used in the code.

Line 82

Means that there will be two parameters inputted into the S-function block in

Simulink.

Lines 83-86

Return an error to MATLAB if the incorrect number of parameters is found.

Line 88

Defines zero continuous states since the model is running with a preset, fixed step

time.

Line 89

Defines eleven discrete states which must match the number of input ports found

in line 91.

Lines 92-102

Set the size of each input port

 99

Lines 103-113

Denote each input port as a direct feed through port.

Line 115

Defines eight output ports from the S-function.

Lines 116-123

Define the width of each port.

Line 125

Defines one sample time to be used.

Lines 126-129

define the number of real, integer, pointer, and mode work vectors to be used in

the program. The work vectors can be thought of as a value of a certain type (real,

integer, pointer, etc.) that is stored in persistent memory. This means that the

value will be stored even while the program is called multiple times.

Line 130

Defines the number of zero crossings to be zero as it is not used in the filter

program.

mdlInitializeSampleTimes function

Line 144

Defines the program’s sample time to be set to dT, which come from the second

parameter input to the S-function block in line 45.

Line 145

Indicates a 0.0 second offset time

Line 147

Indicates that a function call is made on the first element of the first output port.

mdlStart function

Defines all of the variables that need to be initialized only once, i.e. the very first

time the program is run in the simulation.

 100

Line 161

Predefines the integer work vectors for the index counter and the integrator flag

that indicates when the discrete integrator blocks in the open-loop filter subsystem

need to be reset.

Lines 162 and 163

Predefine the real work vectors for the initial x, y, and z positions and velocities.

Lines 168-170

Predefine the buffers that are used in the code for data storage.

Lines 175-189

Initialize the buffers to a number of positions equal to MAX_INDEX (from line

49) with each position having enough memory to store a piece of data with the

size real_T. The calloc command also initializes every position in the buffers to

zero.

Lines 191-199

Define the first value for the index counter, integrator reset flag, and position and

velocity initial conditions to be zero.

Lines 203-219

Set the pointer work vectors to point to the first position of each of the buffers.

Lines 221-230

Set and store the initial integer and real work values.

mdlOutputs function

Lines 242-270

Contain the input and output declarations.

Lines 242-247 and 253-258

Define the pointers and values of the position and velocity estimates coming from

the open loop filter function call.

Lines 248 and 259

Define the pointer and value coming in from the PVNT update delay subsystem

Lines 249-251 and 260-263

 101

Define the actual PVNT update (x,y,z) from the target model subsystem.

Lines 252 and 263

Designate a port for the clock input.

Lines 264-269

Define output ports for the position and velocity initial conditions to the open-

loop filter function call.

Line 270

Defines the integrator reset signal, which is also fed into the open-loop filter

function call.

Lines 272-280

Contain declarations for the work values and the buffers which match the

declarations found in the mdlStart function.

Lines 286-290

Define and initialize the non-persistent variables that are used only in the

Euler_integration and mdlOutputs function.

Lines 302-318

Retrieves the values that were stored in the pointer work vectors

Lines 321-328

Retrieves the values that were stored in the integer and real work vectors.

Lines 338-388

Contained in an if loop that executes only if the index counter is less than or equal

to the preset MAX_INDEX value. This ensures that no data is written to the

buffers beyond their maximum preset number of storage positions, reducing the

risk of buffer overflow.

Line 345

Sets the integrator_reset output to the integer work value integrator_flag.

Lines 354-359

Take in the estimated position and velocity values from the first six inputs

(arriving from the outputs of the open-loop filter function call).

Lines 362-367

 102

Set the respective buffer values to the inputted position and velocity estimates.

These values are then also stored in the real work vectors designating position and

velocity initial conditions.

Line 378

Resets the integrator flag integer work value to zero (if it was set to one following

the Euler integration loop, see line 473).

Lines 380-382

Take in the PVNT position update (x,y,z) from the true target model subsystem in

the Simulink diagram

Lines 385-387.

 Assign the values from the PVNT position update to their respective buffers.

Lines 392-475

Contained in an if loop that is only triggered if the input from the PVNT delay

subsystem is set high, indicating that a PVNT update is available.

Lines 395-400

Adjust the pointers to each position and velocity buffer so that they now refer to

timeτ , the time to which the PVNT update refers. This is controlled by the index

integer work vector which is incremented after each iteration of the mdlOutputs

function (see line 479).

Lines 402-404

Perform the same operation for the buffers that contain the PVNT position update

data.

Lines 408-410

Calculate the difference between the estimated position data at time τ and the

PVNT position update at time τ for x, y, and z.

Lines 414-419

Set up the values for the first position of the buffers that are used in the

Euler_integration function and to pass on the updated position and velocity data

to the open-loop filter function call.

 103

Line 425

Begins the asynchronous portion of the S-function. The for loop runs enough

times to move the new estimated position and velocity values from time τ to time

t (current system time), which is controlled by the index integer work vector

value.

Lines 430-432

Set the delta variable values originally set in lines 408-410 to zero after the first

iteration of the for loop, allowing for normal, dead-reckoning style integration.

Line 435

Passes the required variables to the Euler_integration function in lines 58-73.

Additionally, the “&” in front of the temp buffers indicate that their changed

values from the Euler_integration function will be saved after the function

executes.

Lines 439-444

Increment the pointer values for the buffers that will contain the updated position

and velocity estimates.

Lines 448-453

Actually set the buffers equal to the updates.

Lines 463-468

After the for loop runs the appropriate number of times to arrive at time t, the

final value from each of the buffers containing the updated position and velocity

estimates are passed to the initial condition real work vectors in these lines.

Additionally, two integrator reset values are set. The first is the reset_index

variable on line 470 set equal to one and used inside the S-function program on

line 477.

The second is the integrator_flag integer work value on line 473 that is outputted

to the open-loop function call outside the S-function block.

The remainder of the buffer pointer incrementation/resets take place in the

if/else loop in lines 477-501. The if loop portion checks to see if the current index

 104

variable value is less that the preset MAX_INDEX value and if the reset_index

variable value is equal to zero (indicating that a PVNT update did not arrive

during the current mdlOutputs function iteration. If so, the index integer work

value is incremented along with the pointers to the position and velocity data

buffers.

If the criterion for the if loop are not met, meaning that a PVNT update has

occurred, the buffer pointers are all reset back to their first position and the index

integer work value is set to zero. This ensures that the buffers are simply

overwritten with the new data until the next PVNT update and buffer overflow

does not occur. Finally, the pointer work values are updated to now designate the

new pointer values for the position and velocity data buffers.

mdlUpdate function

This would be the function in which states would be incremented if they were

used in the program. Since the filter design does not use theses states, however,

the mdlUpdate function is only left in the program as a formality.

mdlTerminate function

In this case, all of the data from the buffers must be cleared to avoid errors when

re-running the simulation multiple times.

Lines 537-553

Designate each of the buffers that were originally defined in the mdlStart

function.

Lines 560-574

Actually release the data stored in the buffers.

 105

2. Code

1 /* File : s_filter_general.c
2 * Abstract:
3 *
4 * This S-function is a combination of an open-loop filter using a
5 * function call subsystem and an asynchronous filter contained in the
6 * C code of the S-function. The model is used for a target tracking
7 * system, utilizing a delayed position update at different time
8 * intervals. When the position update (labeled PVNT) is not
9 * available, the S-function calls the open-loop filter and stores the
10 * results. When the delayed position update arrives, the loop
11 * containing the asynchronous filter is run to update the previous
12 * data from time tau (corresponding to the PVNT update) to time t
13 * (corresponding to the current time) using buffers to store all
14 * data. The model takes in parameters from the S-function block in
15 * the Simulink model for the maximum amount of delay (seconds) and
16 * the desired time step (seconds). The user can easily manipulate
17 * these parameters without having to change C code in the S-function
18 *
19 * For more details about S-functions, see
20 * matlabroot/simulink/src/sfuntmpl_doc.c
21 *
22 * Copyright 1990-2006 The MathWorks, Inc.
23 * $Revision: 1.15.4.3 $
24 */
25
26 #define S_FUNCTION_NAME s_filter_general
27 #define S_FUNCTION_LEVEL 2
28
29 #include "simstruc.h"
30
31 #include <stdlib.h>
32 #include <stdio.h>
33 #include <string.h>
34 #include <math.h>
35
36
37 /* Input Arguments */
38 /*takes in parameters that define a max value for the PVNT update delay and
39 *the desired time step*/
40 #define MAX_DELAY ssGetSFcnParam(S,0)
41 #define TIME_STEP ssGetSFcnParam(S,1)
42
43 /*converts the above parameters from structs to allow them to be used in
44 *computations*/
45 #define dT ((real_T) mxGetPr(TIME_STEP)[0])
46 #define DELAY_MAX ((real_T) mxGetPr(MAX_DELAY)[0])
47
48 /*defines and global constant that is used to prevent buffer overflow*/
49 #define MAX_INDEX (DELAY_MAX/dT)
50
51

 106

52 /* Function: Euler_integration ==
53 * Abstract:
54 * Performs asynchronous forward Euler integration once the PVNT update is
55 * received in order to rewrite over the previous data from time tau to
56 * time t.
57 */
58 void Euler_integration(double k1, double k2, float delta_x_tou, float delta_y_tou, float

delta_z_tou, float time_step, real_T *new_Px_est_tou, real_T *new_Vx_est_tou, real_T
*new_Py_est_tou, real_T *new_Vy_est_tou, real_T *new_Pz_est_tou, real_T
*new_Vz_est_tou, real_T *temp_new_Px_est_tou, real_T *temp_new_Vx_est_tou,
real_T *temp_new_Py_est_tou, real_T *temp_new_Vy_est_tou, real_T
*temp_new_Pz_est_tou, real_T *temp_new_Vz_est_tou)

59 {
60 /*performs asynchronous double integration with a time step
61 *equal to dT seconds and stores the results in a temp variable
62 *to be transferred to the buffers after they have been
63 *incremented*/
64
65 *temp_new_Px_est_tou = *new_Px_est_tou+ (*new_Vx_est_tou +

k1*delta_x_tou)*time_step;
66 *temp_new_Vx_est_tou = *new_Vx_est_tou+ (k2*delta_x_tou)*time_step;
67
68 *temp_new_Py_est_tou = *new_Py_est_tou+ (*new_Vy_est_tou +

k1*delta_y_tou)*time_step;
69 *temp_new_Vy_est_tou = *new_Vy_est_tou+ (k2*delta_y_tou)*time_step;
70
71 *temp_new_Pz_est_tou = *new_Pz_est_tou+ (*new_Vz_est_tou +

k1*delta_z_tou)*time_step;
72 *temp_new_Vz_est_tou = *new_Vz_est_tou+ (k2*delta_z_tou)*time_step;
73 }
74
75
76 /* Function: mdlInitializeSizes ===
77 * Abstract:
78 * Setup sizes of the various vectors.
79 */
80 static void mdlInitializeSizes(SimStruct *S)
81 {
82 ssSetNumSFcnParams(S, 2); /* Number of expected parameters */
83 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S))
84 {
85 return; /* Parameter mismatch will be reported by Simulink */
86 }
87
88 ssSetNumContStates(S, 0); /*defines 0 continuous states*/
89 ssSetNumDiscStates(S, 11); /*defines 11 discrete states*/
90
91 if (!ssSetNumInputPorts(S, 11)) return; /*defines 11 input ports*/
92 ssSetInputPortWidth(S, 0, 1); /*sets input 1 port size to 1*/
93 ssSetInputPortWidth(S, 1, 1); /*sets input 2 port size to 1*/
94 ssSetInputPortWidth(S, 2, 1); /*sets input 3 port size to 1*/
95 ssSetInputPortWidth(S, 3, 1); /*sets input 4 port size to 1*/
96 ssSetInputPortWidth(S, 4, 1); /*sets input 5 port size to 1*/
97 ssSetInputPortWidth(S, 5, 1); /*sets input 6 port size to 1*/
98 ssSetInputPortWidth(S, 6, 1); /*sets input 7 port size to 1*/

 107

99 ssSetInputPortWidth(S, 7, 1); /*sets input 8 port size to 1*/
100 ssSetInputPortWidth(S, 8, 1); /*sets input 9 port size to 1*/
101 ssSetInputPortWidth(S, 9, 1); /*sets input 10 port size to 1*/
102 ssSetInputPortWidth(S, 10, 1); /*sets input 11 port size to 1*/
103 ssSetInputPortDirectFeedThrough(S, 0, 1);
104 ssSetInputPortDirectFeedThrough(S, 1, 1);
105 ssSetInputPortDirectFeedThrough(S, 2, 1);
106 ssSetInputPortDirectFeedThrough(S, 3, 1);
107 ssSetInputPortDirectFeedThrough(S, 4, 1);
108 ssSetInputPortDirectFeedThrough(S, 5, 1);
109 ssSetInputPortDirectFeedThrough(S, 6, 1);
110 ssSetInputPortDirectFeedThrough(S, 7, 1);
111 ssSetInputPortDirectFeedThrough(S, 8, 1);
112 ssSetInputPortDirectFeedThrough(S, 9, 1);
113 ssSetInputPortDirectFeedThrough(S, 10, 1);
114
115 if (!ssSetNumOutputPorts(S,8)) return;
116 ssSetOutputPortWidth(S, 0, 1); /*sets output port 1 width to 1*/
117 ssSetOutputPortWidth(S, 1, 1); /*sets output port 2 width to 1*/
118 ssSetOutputPortWidth(S, 2, 1); /*sets output port 3 width to 1*/
119 ssSetOutputPortWidth(S, 3, 1); /*sets output port 4 width to 1*/
120 ssSetOutputPortWidth(S, 4, 1); /*sets output port 5 width to 1*/
121 ssSetOutputPortWidth(S, 5, 1); /*sets output port 6 width to 1*/
122 ssSetOutputPortWidth(S, 6, 1); /*sets output port 7 width to 1*/
123 ssSetOutputPortWidth(S, 7, 1); /*sets output port 8 width to 1*/
124
125 ssSetNumSampleTimes(S, 1);
126 ssSetNumRWork(S, 6); /*real vector*/
127 ssSetNumIWork(S, 2); /*integer vector*/
128 ssSetNumPWork(S, 15); /*pointer vector*/
129 ssSetNumModes(S, 0); /*mode vector*/
130 ssSetNumNonsampledZCs(S, 0); /*number of zero crossings*/
131
132 /* Take care when specifying exception free code - see sfuntmpl_doc.c */
133 ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);
134 }
135
136
137 /* Function: mdlInitializeSampleTimes ===================================
138 * Abstract:
139 * Discrete sample time of dT seconds and specify that we are doing
140 * function-call's on the 1st element of the 1st output port.
141 */
142 static void mdlInitializeSampleTimes(SimStruct *S)
143 {
144 ssSetSampleTime(S, 0, dT); /*sets sample time to dT seconds*/
145 ssSetOffsetTime(S, 0, 0.0); /*indicates 0 offset time*/
146
147 ssSetCallSystemOutput(S,0); /* call on first element */
148 ssSetModelReferenceSampleTimeDefaultInheritance(S);
149 }
150
151
152 /*Function: mdlStart ==
153 *Abstract:

 108

154 * This function sets up the variables passed between the function and
155 * the s-function.
156 */
157 #define MDL_START
158
159 static void mdlStart(SimStruct *S)
160 {
161 int_T index, integrator_flag;
162 real_T initial_x_position, initial_y_position, initial_z_position;
163 real_T initial_x_velocity, initial_y_velocity, initial_z_velocity;
164
165 /*The four real_T variables below denote the buffers used to store
166 *velocity and position data over multiple iterations of the
167 *s-function*/
168 real_T *velocity_x_data, *position_x_data, *velocity_y_data, *position_y_data,

*velocity_z_data, *position_z_data;
169 real_T *new_Vx_est_tou, *new_Px_est_tou, *new_Vy_est_tou, *new_Py_est_tou,

*new_Vz_est_tou, *new_Pz_est_tou;
170 real_T *x_PVNT_data, *y_PVNT_data, *z_PVNT_data;
171
172 /*The buffers are allocated enough memory to store 'MAX_INDEX' data
173 *with each data space being 'real_T' size. The 'calloc' command also
174 *initializes the buffers*/
175 velocity_x_data = (real_T *) calloc(MAX_INDEX, sizeof(real_T));
176 position_x_data = (real_T *) calloc(MAX_INDEX, sizeof(real_T));
177 velocity_y_data = (real_T *) calloc(MAX_INDEX, sizeof(real_T));
178 position_y_data = (real_T *) calloc(MAX_INDEX, sizeof(real_T));
179 velocity_z_data = (real_T *) calloc(MAX_INDEX, sizeof(real_T));
180 position_z_data = (real_T *) calloc(MAX_INDEX, sizeof(real_T));
181 new_Vx_est_tou = (real_T *) calloc(MAX_INDEX, sizeof(real_T));
182 new_Px_est_tou = (real_T *) calloc(MAX_INDEX, sizeof(real_T));
183 new_Vy_est_tou = (real_T *) calloc(MAX_INDEX, sizeof(real_T));
184 new_Py_est_tou = (real_T *) calloc(MAX_INDEX, sizeof(real_T));
185 new_Vz_est_tou = (real_T *) calloc(MAX_INDEX, sizeof(real_T));
186 new_Pz_est_tou = (real_T *) calloc(MAX_INDEX, sizeof(real_T));
187 x_PVNT_data = (real_T *) calloc(MAX_INDEX, sizeof(real_T));
188 y_PVNT_data = (real_T *) calloc(MAX_INDEX, sizeof(real_T));
189 z_PVNT_data = (real_T *) calloc(MAX_INDEX, sizeof(real_T));
190
191 index = 0; /*initializes index to 0*/
192 integrator_flag = 0; //sets integration reset flag to 0
193
194 initial_x_velocity = 0.0; //initializes position and velocity
195 initial_y_velocity = 0.0; //IC's to 0
196 initial_z_velocity = 0.0;
197 initial_x_position = 0.0;
198 initial_y_position = 0.0;
199 initial_z_position = 0.0;
200
201
202 /*Sets the pointer work variables for the buffers*/
203 ssSetPWorkValue(S, 0, (real_T *)velocity_x_data);
204 ssSetPWorkValue(S, 1, (real_T *)position_x_data);
205 ssSetPWorkValue(S, 2, (real_T *)velocity_y_data);
206 ssSetPWorkValue(S, 3, (real_T *)position_y_data);

 109

207 ssSetPWorkValue(S, 4, (real_T *)velocity_z_data);
208 ssSetPWorkValue(S, 5, (real_T *)position_z_data);
209
210 ssSetPWorkValue(S, 6, (real_T *)new_Vx_est_tou);
211 ssSetPWorkValue(S, 7, (real_T *)new_Px_est_tou);
212 ssSetPWorkValue(S, 8, (real_T *)new_Vy_est_tou);
213 ssSetPWorkValue(S, 9, (real_T *)new_Py_est_tou);
214 ssSetPWorkValue(S, 10, (real_T *)new_Vz_est_tou);
215 ssSetPWorkValue(S, 11, (real_T *)new_Pz_est_tou);
216
217 ssSetPWorkValue(S, 12, (real_T *)x_PVNT_data);
218 ssSetPWorkValue(S, 13, (real_T *)y_PVNT_data);
219 ssSetPWorkValue(S, 14, (real_T *)z_PVNT_data);
220
221 ssSetIWorkValue(S, 0, index); /*sets the first integer work
222 *value to the index variable*/
223 ssSetIWorkValue(S, 1, integrator_flag); /*sets the second integer work
224 *value to the integrator flag*/
225 ssSetRWorkValue(S, 0, initial_x_velocity); /*sets the real work values*/
226 ssSetRWorkValue(S, 1, initial_x_position);
227 ssSetRWorkValue(S, 2, initial_y_velocity);
228 ssSetRWorkValue(S, 3, initial_y_position);
229 ssSetRWorkValue(S, 4, initial_z_velocity);
230 ssSetRWorkValue(S, 5, initial_z_position);
231 }
232
233
234 /* Function: mdlOutputs ===
235 * Abstract:
236 * Issue ssCallSystemWithTid on 1st output element of 1st output port
237 * and then update 2nd output port with the state.
238 */
239 static void mdlOutputs(SimStruct *S, int_T tid)
240 {
241 /*S-function input and output declarations*/
242 real_T *Vx_est = ssGetRealDiscStates(S,0);
243 real_T *Px_est = ssGetRealDiscStates(S,1);
244 real_T *Vy_est = ssGetRealDiscStates(S,2);
245 real_T *Vz_est = ssGetRealDiscStates(S,4);
247 real_T *Pz_est = ssGetRealDiscStates(S,5);
248 real_T *PVNT = ssGetRealDiscStates(S,6);
249 real_T *x_ro = ssGetRealDiscStates(S,7);
250 real_T *y_ro = ssGetRealDiscStates(S,8);
251 real_T *z_ro = ssGetRealDiscStates(S,9);
252 real_T *clock = ssGetRealDiscStates(S,10);
253 InputRealPtrsType Vx_est_Ptrs = ssGetInputPortRealSignalPtrs(S,0);
254 InputRealPtrsType Px_est_Ptrs = ssGetInputPortRealSignalPtrs(S,1);
255 InputRealPtrsType Vy_est_Ptrs = ssGetInputPortRealSignalPtrs(S,2);
256 InputRealPtrsType Py_est_Ptrs = ssGetInputPortRealSignalPtrs(S,3);
257 InputRealPtrsType Vz_est_Ptrs = ssGetInputPortRealSignalPtrs(S,4);
258 InputRealPtrsType Pz_est_Ptrs = ssGetInputPortRealSignalPtrs(S,5);
259 InputRealPtrsType PVNT_Ptrs = ssGetInputPortRealSignalPtrs(S,6);
260 InputRealPtrsType x_ro_Ptrs = ssGetInputPortRealSignalPtrs(S,7);
261 InputRealPtrsType y_ro_Ptrs = ssGetInputPortRealSignalPtrs(S,8);
262 InputRealPtrsType z_ro_Ptrs = ssGetInputPortRealSignalPtrs(S,9);

 110

263 InputRealPtrsType clock_Ptrs = ssGetInputPortRealSignalPtrs(S,10);
264 real_T *TgtVx_IC = ssGetOutputPortRealSignal(S,1);
265 real_T *TgtPx_IC = ssGetOutputPortRealSignal(S,2);
266 real_T *TgtVy_IC = ssGetOutputPortRealSignal(S,3);
267 real_T *TgtPy_IC = ssGetOutputPortRealSignal(S,4);
268 real_T *TgtVz_IC = ssGetOutputPortRealSignal(S,5);
269 real_T *TgtPz_IC = ssGetOutputPortRealSignal(S,6);
270 real_T *integrator_reset = ssGetOutputPortRealSignal(S,7);
271
272 int_T index, integrator_flag;
273 real_T initial_x_position, initial_y_position, initial_z_position;
274 real_T initial_x_velocity, initial_y_velocity, initial_z_velocity;
275 real_T temp_new_Vx_est_tou, temp_new_Px_est_tou, temp_new_Vy_est_tou,

temp_new_Py_est_tou, temp_new_Vz_est_tou, temp_new_Pz_est_tou;
276
277 /*buffer declarations for mdlOutputs*/
278 real_T *velocity_x_data, *position_x_data, *velocity_y_data, *position_y_data,

*velocity_z_data, *position_z_data;
279 real_T *new_Vx_est_tou, *new_Px_est_tou, *new_Vy_est_tou, *new_Py_est_tou,

*new_Vz_est_tou, *new_Pz_est_tou;
280 real_T *x_PVNT_data, *y_PVNT_data, *z_PVNT_data;
281
282 /*defines pointer to output file for forward Euler integration results*/
283 // FILE *Euler_output_data;
284
285 /*defines intermediate postion and velocity matrices*/
286 float delta_x_tou = 0.0, delta_y_tou = 0.0, delta_z_tou = 0.0;
287 float time_index = 0.0, delay = 0.0, time_step = dT;
288 int i = 0; /*counter*/
289 int reset_index = 0; /*flag indicating and index reset to 0*/
290 double k1=0.5, k2=0.5; /*sets integrator gains*/
291
292 /*
293 * ssCallSystemWithTid is used to execute a function-call subsystem. The
294 * 2nd argument is the element of the 1st output port index which
295 * connected to the function-call subsystem. Function-call subsystems
296 * can be driven by the first output port of s-function blocks.
297 */
298
299 UNUSED_ARG(tid); /* not used in single tasking mode */
300
301 /*Retrieves the pointer work values for the buffers*/
302 velocity_x_data = (real_T *)ssGetPWorkValue(S, 0);
303 position_x_data = (real_T *)ssGetPWorkValue(S, 1);
304 velocity_y_data = (real_T *)ssGetPWorkValue(S, 2);
305 position_y_data = (real_T *)ssGetPWorkValue(S, 3);
306 velocity_z_data = (real_T *)ssGetPWorkValue(S, 4);
307 position_z_data = (real_T *)ssGetPWorkValue(S, 5);
308
309 new_Vx_est_tou = (real_T *)ssGetPWorkValue(S, 6);
310 new_Px_est_tou = (real_T *)ssGetPWorkValue(S, 7);
311 new_Vy_est_tou = (real_T *)ssGetPWorkValue(S, 8);
312 new_Py_est_tou = (real_T *)ssGetPWorkValue(S, 9);
313 new_Vz_est_tou = (real_T *)ssGetPWorkValue(S, 10);
314 new_Pz_est_tou = (real_T *)ssGetPWorkValue(S, 11);

 111

315
316 x_PVNT_data = (real_T *)ssGetPWorkValue(S, 12);
317 y_PVNT_data = (real_T *)ssGetPWorkValue(S, 13);
318 z_PVNT_data = (real_T *)ssGetPWorkValue(S, 14);
319
320 /*Retrieves integer and real work values*/
321 index = ssGetIWorkValue(S,0);
322 integrator_flag = ssGetIWorkValue(S,1);
323 initial_x_velocity = ssGetRWorkValue(S,0);
324 initial_x_position = ssGetRWorkValue(S,1);
325 initial_y_velocity = ssGetRWorkValue(S,2);
326 initial_y_position = ssGetRWorkValue(S,3);
327 initial_z_velocity = ssGetRWorkValue(S,4);
328 initial_z_position = ssGetRWorkValue(S,5);
329
330 /*creates .txt file for output results*/
331 // Euler_output_data = fopen("Euler_data_general.txt", "w");
332
333 /*Entire sequence is in an 'if' loop to ensure that there is no
334 *overflow for the position and velocity arrays (defined with a maximum
335 *of MAX_INDEX data points.)*/
336 if(index <= (int)MAX_INDEX)
337 {
338 TgtPx_IC[0] = initial_x_position; /*sets outputs to initial V and P*/
339 TgtVx_IC[0] = initial_x_velocity;
340 TgtPy_IC[0] = initial_y_position;
341 TgtVy_IC[0] = initial_y_velocity;
342 TgtPz_IC[0] = initial_z_position;
343 TgtVz_IC[0] = initial_z_velocity;
344
345 integrator_reset[0] = integrator_flag; /*sets output 3 to integration
346 *reset flag*/
347
348 if(!ssCallSystemWithTid(S,0,tid)) /*calls system with task ID 1*/
349 {
350 /* Error occurred which will be reported by Simulink */
351 return;
352 }
353
354 Vx_est_Ptrs = ssGetInputPortRealSignalPtrs(S,0); /*Gets inputs*/
355 Px_est_Ptrs = ssGetInputPortRealSignalPtrs(S,1);
356 Vy_est_Ptrs = ssGetInputPortRealSignalPtrs(S,2);
357 Py_est_Ptrs = ssGetInputPortRealSignalPtrs(S,3);
358 Vz_est_Ptrs = ssGetInputPortRealSignalPtrs(S,4);
359 Pz_est_Ptrs = ssGetInputPortRealSignalPtrs(S,5);
360
361 /*assigns the position and velocity data to the buffers*/
362 *position_x_data = (real_T)*Px_est_Ptrs[0];
363 *velocity_x_data = (real_T)*Vx_est_Ptrs[0];
364 *position_y_data = (real_T)*Py_est_Ptrs[0];
365 *velocity_y_data = (real_T)*Vy_est_Ptrs[0];
366 *position_z_data = (real_T)*Pz_est_Ptrs[0];
367 *velocity_z_data = (real_T)*Vz_est_Ptrs[0];
368
369 /*resets the initial velocity and position values*/

 112

370 initial_x_velocity = ssSetRWorkValue(S, 0, (real_T)*Vx_est_Ptrs[0]);
371 initial_x_position = ssSetRWorkValue(S, 1, (real_T)*Px_est_Ptrs[0]);
372 initial_y_velocity = ssSetRWorkValue(S, 2, (real_T)*Vy_est_Ptrs[0]);
373 initial_y_position = ssSetRWorkValue(S, 3, (real_T)*Py_est_Ptrs[0]);
374 initial_z_velocity = ssSetRWorkValue(S, 4, (real_T)*Vz_est_Ptrs[0]);
375 initial_z_position = ssSetRWorkValue(S, 5, (real_T)*Pz_est_Ptrs[0]);
376
377 /*resets the integrator reset to 0*/
378 integrator_flag = ssSetIWorkValue(S, 1, 0);
379
380 x_ro_Ptrs = ssGetInputPortRealSignalPtrs(S,7); /*takes in ro_star value*/
381 y_ro_Ptrs = ssGetInputPortRealSignalPtrs(S,8);
382 z_ro_Ptrs = ssGetInputPortRealSignalPtrs(S,9);
383
384 /*assigns coordinates to buffers*/
385 *x_PVNT_data = (real_T)*x_ro_Ptrs[0];
386 *y_PVNT_data = (real_T)*y_ro_Ptrs[0];
387 *z_PVNT_data = (real_T)*z_ro_Ptrs[0];
388 }
389
390 if ((real_T)*PVNT_Ptrs[0] >= 0.99)
391 /*indicates pulse is high (PVNT update present)*/
392 {
393 /*calls the estimated position and velocity values at time tou from
394 *the buffers*/
395 position_x_data = position_x_data - index;
396 velocity_x_data = velocity_x_data - index;
397 position_y_data = position_y_data - index;
398 velocity_y_data = velocity_y_data - index;
399 position_z_data = position_z_data - index;
400 velocity_z_data = velocity_z_data - index;
401
402 x_PVNT_data = x_PVNT_data - index;
403 y_PVNT_data = y_PVNT_data - index;
404 z_PVNT_data = z_PVNT_data - index;
405
406 /*calculates the difference between the ro_star update value and the
407 *estimated ro value at time tou*/
408 delta_x_tou = *x_PVNT_data - *position_x_data;
409 delta_y_tou = *y_PVNT_data - *position_y_data;
410 delta_z_tou = *z_PVNT_data - *position_z_data;
411
412 /*sets up the initial conditions based on the x,y,z input from the
413 *PVNT update*/
414 *new_Px_est_tou = *x_PVNT_data;
415 *new_Vx_est_tou = *velocity_x_data;
416 *new_Py_est_tou = *y_PVNT_data;
417 *new_Vy_est_tou = *velocity_y_data;
418 *new_Pz_est_tou = *z_PVNT_data;
419 *new_Vz_est_tou = *velocity_z_data;
420
421 /*sets up time output for Euler_data file*/
422 delay = index;
423 time_index = *clock_Ptrs[0] - (delay * dT);
424

 113

425 for (i=0; i<index; i++) /*increments counter from 0 to the
426 *maximum value of the index*/
427 {
428 if (i != 0) /*allows normal integration after first iteration*/
429 {
430 delta_x_tou = 0.0;
431 delta_y_tou = 0.0;
432 delta_z_tou = 0.0;
433 }
434
435 Euler_integration(k1, k2, delta_x_tou, delta_y_tou, delta_z_tou, time_step,

new_Px_est_tou, new_Vx_est_tou, new_Py_est_tou, new_Vy_est_tou,
new_Pz_est_tou, new_Vz_est_tou, &temp_new_Px_est_tou,
&temp_new_Vx_est_tou, &temp_new_Py_est_tou, &temp_new_Vy_est_tou,
&temp_new_Pz_est_tou, &temp_new_Vz_est_tou);

436
437 /*increments the new_ro_est_tou and new_V_sca_est_tou buffer
438 *pointers*/
439 new_Px_est_tou++;
440 new_Vx_est_tou++;
441 new_Py_est_tou++;
442 new_Vy_est_tou++;
443 new_Pz_est_tou++;
444 new_Vz_est_tou++;
445
446 /*sets the now incremented buffers equal to the results from
447 *the forward Euler integration*/
448 *new_Px_est_tou = temp_new_Px_est_tou;
449 *new_Vx_est_tou = temp_new_Vx_est_tou;
450 *new_Py_est_tou = temp_new_Py_est_tou;
451 *new_Vy_est_tou = temp_new_Vy_est_tou;
452 *new_Pz_est_tou = temp_new_Pz_est_tou;
453 *new_Vz_est_tou = temp_new_Vz_est_tou;
454
455 /*prints Euler integration data to the output file for later
456 *comparison to actual target data*/
457 // fprintf(Euler_output_data, "%f %f %f %f %f %f %f \n", time_index,

(float)*new_Px_est_tou, (float)*new_Py_est_tou, (float)*new_Pz_est_tou,
(float)*new_Vx_est_tou, (float)*new_Vy_est_tou, (float)*new_Vz_est_tou);

458 time_index = time_index + dT;
459 }
460
461 /*resets the initial velocity and position values that will go to
462 *the open loop filter during the next function iteration.*/
463 initial_x_velocity = ssSetRWorkValue(S, 0, *new_Vx_est_tou);
464 initial_x_position = ssSetRWorkValue(S, 1, *new_Px_est_tou);
465 initial_y_velocity = ssSetRWorkValue(S, 2, *new_Vy_est_tou);
466 initial_y_position = ssSetRWorkValue(S, 3, *new_Py_est_tou);
467 initial_z_velocity = ssSetRWorkValue(S, 4, *new_Vz_est_tou);
468 initial_z_position = ssSetRWorkValue(S, 5, *new_Pz_est_tou);
469
470 reset_index = 1; /*triggers flag to indicate that an index
471 *reset is needed*/
472
473 integrator_flag = ssSetIWorkValue(S, 1, 1); /*triggers open loop

 114

474 *integrator reset*/
475 }
476
477 if((index <= (int)MAX_INDEX) && (reset_index==0))
478 {
479 index = ssSetIWorkValue(S, 0, index+1); /*increments index value*/
480 velocity_x_data++; /*increments buffer pointers*/
481 position_x_data++;
482 velocity_y_data++;
483 position_y_data++;
484 velocity_z_data++;
485 position_z_data++;
486 x_PVNT_data++;
487 y_PVNT_data++;
488 z_PVNT_data++;
489 }
490
491 else
492 {
493 new_Px_est_tou=new_Px_est_tou-index;
494 new_Vx_est_tou=new_Vx_est_tou-index;
495 new_Py_est_tou=new_Py_est_tou-index;
496 new_Vy_est_tou=new_Vy_est_tou-index;
497 new_Pz_est_tou=new_Pz_est_tou-index;
498 new_Vz_est_tou=new_Vz_est_tou-index;
499
500 index = ssSetIWorkValue(S, 0, 0); /*resets index value to 0*/
501 }
502
503 /*resets the pointer work values for the velocity_data and
504 *position_data buffers*/
505 ssSetPWorkValue(S, 0, (real_T *)velocity_x_data);
506 ssSetPWorkValue(S, 1, (real_T *)position_x_data);
507 ssSetPWorkValue(S, 2, (real_T *)velocity_y_data);
508 ssSetPWorkValue(S, 3, (real_T *)position_y_data);
509 ssSetPWorkValue(S, 4, (real_T *)velocity_z_data);
510 ssSetPWorkValue(S, 5, (real_T *)position_z_data);
511
512 ssSetPWorkValue(S, 12, (real_T *)x_PVNT_data);
513 ssSetPWorkValue(S, 13, (real_T *)y_PVNT_data);
514 ssSetPWorkValue(S, 14, (real_T *)z_PVNT_data);
515 }
516
517
518 /* Function: mdlUpdate ===
519 * Abstract:
520 * Increment the state for next time around (i.e. a counter).
521 */
522 #define MDL_UPDATE
523 static void mdlUpdate(SimStruct *S, int_T tid)
524 {
525
526 UNUSED_ARG(tid); /* not used in single tasking mode */
527
528 }

 115

529
530
531 /* Function: mdlTerminate ===
532 * Abstract:
533 * Required to have this routine.
534 */
535 static void mdlTerminate(SimStruct *S)
536 {
537 real_T *velocity_x_data = ssGetPWorkValue(S, 0);
538 real_T *position_x_data = ssGetPWorkValue(S, 1);
539 real_T *velocity_y_data = ssGetPWorkValue(S, 2);
540 real_T *position_y_data = ssGetPWorkValue(S, 3);
541 real_T *velocity_z_data = ssGetPWorkValue(S, 4);
542 real_T *position_z_data = ssGetPWorkValue(S, 5);
543
544 real_T *new_Vx_est_tou = ssGetPWorkValue(S, 6);
545 real_T *new_Px_est_tou = ssGetPWorkValue(S, 7);
546 real_T *new_Vy_est_tou = ssGetPWorkValue(S, 8);
547 real_T *new_Py_est_tou = ssGetPWorkValue(S, 9);
548 real_T *new_Vz_est_tou = ssGetPWorkValue(S, 10);
549 real_T *new_Pz_est_tou = ssGetPWorkValue(S, 11);
550
551 real_T *x_PVNT_data = ssGetPWorkValue(S, 12);
552 real_T *y_PVNT_data = ssGetPWorkValue(S, 13);
553 real_T *z_PVNT_data = ssGetPWorkValue(S, 14);
554
555 // FILE *Euler_output_data;
556
557 UNUSED_ARG(S); /* unused input argument */
558
559 /*releases data stored in buffers*/
560 free(velocity_x_data);
561 free(position_x_data);
562 free(velocity_y_data);
563 free(position_y_data);
564 free(velocity_z_data);
565 free(position_z_data);
566 free(new_Vx_est_tou);
567 free(new_Px_est_tou);
568 free(new_Vy_est_tou);
569 free(new_Py_est_tou);
570 free(new_Vz_est_tou);
571 free(new_Pz_est_tou);
572 free(x_PVNT_data);
573 free(y_PVNT_data);
574 free(z_PVNT_data);
575
576 /*closes Euler integration data output file*/
577 // fclose(Euler_output_data);
578 }
579
580 #ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
581 #include "simulink.c" /* MEX-file interface mechanism */

 116

582 #else
583 #include "cg_sfun.h" /* Code generation registration function */
584 #endif

 117

B. ROAD FOLLOWING FILTER S-FUNCTION

The road following filter is similar in method to the general filter but contains two

major differences. First, the S-function receives the PVNT update input just like the

general filter S-function, but it utilizes an optimization routine before passing the position

update on to the remainder of the program. Since the filter can use the road equations in

its calculations, it is able to calculate the best position update in terms of the road

parameter, ρ . The optimization function uses a dichotomy method to quickly and

accurately find the best ρ value pertaining to the PVNT x, y, z input. The dichotomy

method divides the area of the road it is to search in half and uses a step size to define

two points on either side of the halfway mark. The function then calculates and compares

the distance from these points to the inputted PVNT update. Using the results, the

function will reset either the lower or upper boundary and repeat the calculations until a

pre-determined tolerance is met. This results in a routine that is much faster than and just

as accurate as calculating and comparing distances from each point within a given range

along the road to the inputted PVNT update.

The second main difference between the filters is that all of the integration

calculations are done using ρ and velocity instead of the x, y, and z coordinates and

magnitudes. Once again, this is only possible because the road equations are known

before the system is simulated.

1. Manual

File: s_filter_road_following.c

Lines 26-57

Complete basic program initializations, library calls, and global variable input.

Lines 26 and 27

Designate the file name and indicate that the file is in C code, to be converted into

MEX format and run in MATLAB.

 118

Lines 29-34

Make all the necessary library calls that are required in the program.

Lines 40-42

Take in the three S-function parameters: MAX_DELAY, TIME_STEP, and

ROAD_EQUATION from the S-function block in the Simulink model.

MAX_DELAY is the maximum amount of expected delay in between PVNT

updates while TIME_STEP is the time step to be used by the C code. NOTE: The

time step parameter value must match the discrete time step value found on the

simulation parameters menu in Simulink. The ROAD_EQUATION parameter is

used to define which road model equations are used in the optimization function

(there were two different road models used during initial simulation and testing).

Lines 46-48

Convert the parameters into “real_T” format for use in numerical calculations

later.

Line 52

Defines the global variable MAX_INDEX, used to ensure that buffer overflow

does not occur.

Lines 53-56

Define the coefficients for the third order road model and the radius of the circle

(meters) for the circular road model.

Line 57

Defines pi as a constant for used in the phase shift of the circular road model

equations found in the optimization function (see lines 103 and 107)

PVNT_optimization function

Line 69

Lists the inputs to the function along with buffers marked by an asterisk in front

of their names.

 119

Lines 71-76

Define and initialize the variables that are only used inside the function such as

the upper and lower bounds and the desired tolerance of the final result.

Lines 79-80

Initialize the upper and lower bounds before the dichotomy loop. The

ro_optimize_start real work value is taken in from the mdlOutputs function (see

line 455).

Lines 85-126

Contain the dichotomy loop.

Line 85

Defines limits the amount of loop iterations to 100 and dictates that the loop

should continue until the required tolerance is met.

Lines 87-88

Define the upper and lower ρ limits by dividing the search area of the road in

half and adding and subtracting the step size.

Lines 90-99

Compute the position points along the road based on the upper and lower ρ limits

if the third order road model is being used based on the inputted parameter from

line 42.

Lines 101-110

Compute the position points along the road based on the upper and lower ρ limits

if the circular road model is being used based on the inputted parameter from line

42.

Lines 112-113

Use the distance formula to compute the distance between the PVNT position

input and the calculated position points.

The if/else loops in lines 115-122 compare the distance values and, based on the

results, reset the right or left boundary to one of the ρ limits.

Lines 124 and 125

 120

Compute the current tolerance and increments the counter pertaining to the while

loop.

Line 127

Sends out the new ρ update value following successful completion of the

dichotomy loop.

Euler_integration function:

Line 137

Lists the inputs to the function along with buffers marked by an asterisk in front

of their names.

Lines 144-145

Perform forward Euler integration for the ρ variable, assigning the new position

and velocity values to the buffers beginning with “temp.”

mdlInitializeSizes function

Line 155

Means that there will be three parameters inputted into the S-function block in

Simulink

Lines 156-159

Return an error to MATLAB if the incorrect number of parameters is found.

Line 161

Defines zero continuous states since the model is running with a preset, fixed step

time.

Line 162

Defines seven discrete states which must match the number of input ports found

in line 164.

Lines 165-171

Set the size of each input port.

Lines 172-178

Denote each input port as a direct feed through port.

 121

Line 180

Defines four output ports from the S-function.

Lines 181-184

Define the width of each port.

Line 186

Defines one sample time to be used

Lines 187-190

Define the number of real, integer, pointer, and mode work vectors to be used in

the program. The work vectors can be thought of as a value of a certain type (real,

integer, pointer, etc.) that is stored in persistent memory. This means that the

value will be stored even while the program is called multiple times.

Line 191

Defines the number of zero crossings to be zero as it is not used in the filter

program.

mdlInitializeSampleTimes function

Line 205

Defines the program’s sample time to be set to dT, which come from the second

parameter input to the S-function block in line 46.

Line 206

Indicates a 0.0 second offset time and line 208 indicates that a function call is

made on the first element of the first output port.

mdlStart function

Defines all of the variables that need to be initialized only once, i.e. the very first

time the program is run in the simulation.

Line 222

Predefines the integer work vectors for the index counter and the integrator flag

that indicates when the discrete integrator blocks in the open-loop filter subsystem

need to be reset.

 122

Line 223

Predefines the real work vectors for the initial x, y, and z positions and velocities.

Lines 228-230

Predefine the buffers that are used in the code for data storage

Lines 235-241

Initialize the buffers to a number of positions equal to MAX_INDEX (from line

52) with each position having enough memory to store a piece of data with the

size real_T. The calloc command also initializes every position in the buffers to

zero.

Lines 243-247

Define the first value for the index counter, integrator reset flag, position and

velocity initial conditions, and the starting ρ variable for the optimization

function to be zero.

Lines 251-257

Set the pointer work vectors to point to the first position of each of the buffers

Lines 259-267

Set and store the initial integer and real work values.

mdlOutputs function

Lines 278-294

Contain the input and output declarations.

Lines 278-279 and 285-286

Define the pointers and values of the position and velocity estimates coming from

the open loop filter function call.

Lines 280 and 287

Define the pointer and value coming in from the PVNT update delay subsystem

Lines 281-283 and 288-290

Define the actual PVNT update (x,y,z) from the target model subsystem.

Lines 284 and 291

Designate a port for the clock input.

 123

Lines 292-293

Define output ports for the position and velocity initial conditions to the open-

loop filter function call.

Line 294

Defines the integrator reset signal, which is also fed into the open-loop filter

function call.

Lines 296-303

Contain declarations for the work values and the buffers which match the

declarations found in the mdlStart function.

Lines 309-319

Define and initialize the non-persistent variables that are used only in the

Euler_integration, PVNT_optimization, and mdlOutputs function.

Lines 331-337

Retrieves the values that were stored in the pointer work vectors.

Lines 340-344

Retrieves the values that were stored in the integer and real work vectors.

Lines 352-389

Contained in an if loop that executes only if the index counter is less than or equal

to the preset MAX_INDEX value. This ensures that no data is written to the

buffers beyond their maximum preset number of storage positions, reducing the

risk of buffer overflow.

Lines 354-355

Set the second and third output ports to the position and velocity initial

conditions.

Line 357

Sets the integrator_reset output to the integer work value integrator_flag.

Lines 360-364

Call the open loop filter function call block in the Simulink diagram through the

first output port.

Lines 366-367

 124

Take in the estimated position and velocity values from the first six inputs

(arriving from the outputs of the open-loop filter function call).

Lines 370-371

Set the respective buffer values to the inputted position and velocity estimates.

These values are then also stored in the real work vectors designating position and

velocity initial conditions.

Line 378

Resets the integrator flag integer work value to zero (if it was set to one following

the Euler integration loop, see line 460).

Lines 381-383

Take in the PVNT position update (x,y,z) from the true target model subsystem in

the Simulink diagram.

Lines 386-388

 Assign PVNT position update to buffers.

Lines 391-447

Contained in an if loop that is only triggered if the input from the PVNT delay

subsystem is set high, indicating that a PVNT update is available.

Lines 397-399

Adjust the pointers to each PVNT buffer so that they now refer to timeτ . This is

controlled by the index integer work vector which is incremented after each

iteration of the mdlOutputs function (see line 471).

Line 402

Calls the PVNT_optimization function and receives the new ρ value.

Lines 407-408

Adjust the pointers to each position and velocity buffer so that they now refer to

timeτ , the time to which the PVNT update refers.

Line 412

Calculates the difference between the estimated position data at time τ and the

PVNT position update at time τ for ρ .

Lines 416-417

 125

Set up the values for the first position of the buffers that are used in the

Euler_integration function and to pass on the updated position and velocity data

to the open-loop filter function call.

Line 423

Begins the asynchronous portion of the S-function. The for loop runs enough

times to move the new estimated position and velocity values from time τ to time

t (current system time), which is controlled by the index integer work vector

value.

Lines 426-429

Set the delta variable value originally set in lines 412 to zero after the first

iteration of the for loop, allowing for normal, dead-reckoning style integration.

Line 431

Passes the required variables to the Euler_integration function in lines 131-146.

Additionally, the “&” in front of the temp buffers indicate that their changed

values from the Euler_integration function will be saved after the function

executes.

Lines 435-436

Increment the pointer values for the buffers that will contain the updated position

and velocity estimates.

Lines 440-441

Actually set the buffers equal to the updates.

After the for loop runs the appropriate number of times to arrive at time t, the

final value from each of the buffers containing the updated position and velocity

estimates are passed to the initial condition real work vectors in lines 451-452.

Line 455

The ro_optimize_start real work value (used in the optimization function) is set.

Additionally, two integrator reset values are set. The first is the reset_index

variable on line 457 set equal to one and used inside the S-function program on

line 464.

 126

The second is the integrator_flag integer work value on line 460 that is outputted

to the open-loop function call outside the S-function block.

The remainder of the buffer pointer incrementation/resets take place in the if/else

loop in lines 464-478. The if loop portion checks to see if the current index

variable value is less that the preset MAX_INDEX value and if the reset_index

variable value is equal to zero (indicating that a PVNT update did not arrive

during the current mdlOutputs function iteration. If so, the index integer work

value is incremented along with the pointers to the position and velocity data

buffers.

If the criterion for the if loop are not met, meaning that a PVNT update has

occurred, the buffer pointers are all reset back to their first position and the index

integer work value is set to zero. This ensures that the buffers are simply

overwritten with the new data until the next PVNT update and buffer overflow

does not occur. Finally, the pointer work values are updated to now designate the

new pointer values for the position and velocity data buffers.

Lines 482-486

Reset the pointer work values for the PVNT, position, and velocity buffers.

mdlUpdate function

This would be the function in which states would be incremented if they were

used in the program. Since the filter design does not use theses states, however,

the mdlUpdate function is only left in the program as a formality.

mdlTerminate function

In this case, all of the data from the buffers must be cleared to avoid errors when

re-running the simulation multiple times.

Lines 510-516

Designate each of the buffers that were originally defined in the mdlStart function

Lines 523-529

 127

Actually release the data stored in the buffers.

2. Code

1 /* File : s_filter_road_following.c
2 * Abstract:
3 *
4 * This S-function is a combination of an open-loop filter using a
5 * function call subsystem and an asynchronous filter contained in the
6 * C code of the S-function. The model is used for a target tracking
7 * system, utilizing a delayed position update at different time
8 * intervals. When the position update (labeled PVNT) is not
9 * available, the S-function calls the open-loop filter and stores the
10 * results. When the delayed position update arrives, the loop
11 * containing the asynchronous filter is run to update the previous
12 * data from time tau (corresponding to the PVNT update) to time t
13 * (corresponding to the current time) using buffers to store all
14 * data. The model takes in parameters from the S-function block in
15 * the Simulink model for the maximum amount of delay (seconds) and
16 * the desired time step (seconds). The user can easily manipulate
17 * these parameters without having to change C code in the S-function
18 *
19 * For more details about S-functions, see
20 * matlabroot/simulink/src/sfuntmpl_doc.c
21 *
22 * Copyright 1990-2006 The MathWorks, Inc.
23 * $Revision: 1.15.4.3 $
24 */
25
26 #define S_FUNCTION_NAME s_filter_road_following
27 #define S_FUNCTION_LEVEL 2
28
29 #include "simstruc.h"
30
31 #include <stdlib.h>
32 #include <stdio.h>
33 #include <string.h>
34 #include <math.h>
35
36
37 /* Input Arguments */
38 /*takes in parameters that define a max value for the PVNT update delay and
39 *the desired time step*/
40 #define MAX_DELAY ssGetSFcnParam(S,0)
41 #define TIME_STEP ssGetSFcnParam(S,1)
42 #define ROAD_EQUATION ssGetSFcnParam(S,2)
43
44 /*converts the above parameters from structs to allow them to be used in
45 *computations*/
46 #define dT ((real_T) mxGetPr(TIME_STEP)[0])
47 #define DELAY_MAX ((real_T) mxGetPr(MAX_DELAY)[0])
48 #define road_equation_selection ((real_T) mxGetPr(ROAD_EQUATION)[0])
49
50 /*defines global constant that is used to prevent buffer overflow and

 128

51 coefficients for road equation*/
52 #define MAX_INDEX (DELAY_MAX/dT)
53 #define coeff_3 0.0000192
54 #define coeff_2 -0.025
55 #define coeff_1 9.74
56 #define radius 2865.0
57 #define pi 3.14159
58
59
60 /* Function: PVNT_optimization
61 * Abstract:
62 * Performs distance measurment between the original PVNT update
63 * coordinates and coordinates defined by the road equation. It then finds
64 * the closest point on the road to the PVNT coordinates and sets that
65 * point as the actual PVNT position update. The third parameter in the
66 * S-function block determines which optimization equation is called
67 * based on which road equation is to be used.
68 */
69 void PVNT_optimization (real_T *x_PVNT_data, real_T *y_PVNT_data, real_T

*z_PVNT_data, real_T ro_optimize_start, real_T *ro_star, int road_eq_selector)
70 {
71 float lower_ro_limit=0.0, upper_ro_limit=0.0;
72 float x_left=0.0, y_left=0.0, z_left=0.0, x_right=0.0, y_right=0.0, z_right=0.0;
73 float distance_1=0.0, distance_2=0.0, step_size=0.5;
74 float left_boundary = 0.0, right_boundary = 0.0, tolerance = 0.000001;
75 float L = 2*tolerance; /*sets L so it is initially higher than tolerance*/
76 int j = 0;
77
78 /*initializes upper and lower bounds for optimization loop*/
79 left_boundary = (float)ro_optimize_start - 50.0;
80 right_boundary = (float)ro_optimize_start + 50.0;
81
82 /*optimization routine for PVNT update: utilizes dichotomy technique to
83 *compare distance from points along the road model to PVNT update
84 *point. final value is outputted as the ro_star update*/
85 while (L>=tolerance && j<=100)
86 {
87 lower_ro_limit = (right_boundary+left_boundary-step_size)/2.0;
88 upper_ro_limit = (right_boundary+left_boundary+step_size)/2.0;
89
90 if (road_eq_selector == 0)
91 {
92 x_left = lower_ro_limit;
93 y_left = coeff_3*pow(lower_ro_limit,3) + coeff_2*pow(lower_ro_limit,2) +

coeff_1*lower_ro_limit;
94 z_left = 0.0;
95
96 x_right = upper_ro_limit;
97 y_right = coeff_3*pow(upper_ro_limit,3) + coeff_2*pow(upper_ro_limit,2) +

coeff_1*upper_ro_limit;
98 z_right = 0.0;
99 }
100
101 if (road_eq_selector == 1)
102 {

 129

103 x_left = radius + radius * sin(lower_ro_limit/radius + 3*pi/2);
104 y_left = radius*sin(lower_ro_limit/radius);
105 z_left = 0.0;
106
107 x_right = radius + radius * sin(upper_ro_limit/radius + 3*pi/2);
108 y_right = radius*sin(upper_ro_limit/radius);
109 z_right = 0.0;
110 }
111
112 distance_1 = sqrt(pow(x_left-*x_PVNT_data,2) + pow(y_left-*y_PVNT_data,2) +

pow(z_left-*z_PVNT_data,2));
113 distance_2 = sqrt(pow(x_right-*x_PVNT_data,2) + pow(y_right-*y_PVNT_data,2) +

pow(z_right-*z_PVNT_data,2));
114
115 if(distance_1 <= distance_2)
116 {
117 right_boundary = upper_ro_limit;
118 }
119 else
120 {
121 left_boundary = lower_ro_limit;
122 }
123
124 L = fabs(distance_1 - distance_2); /*computes current error*/
125 j++; /*increments counter*/
126 }
127 *ro_star = (left_boundary+right_boundary)/2;
128 }
129
130
131 /* Function: Euler_integration ==
132 * Abstract:
133 * Performs asynchronous forward Euler integration once the PVNT update is
134 * received in order to rewrite over the previous data from time tau to
135 * time t.
136 */
137 void Euler_integration(double k1, double k2, float delta_ro_tou, float time_step, real_T

*new_ro_est_tou, real_T *new_V_sca_est_tou, real_T *temp_new_V_sca_est_tou,
real_T *temp_new_ro_est_tou)

138 {
139
140 /*performs asynchronous double integration with a time step
141 *equal to dT seconds and stores the results in a temp variable
142 *to be transferred to the buffers after they have been
143 *incremented*/
144 *temp_new_ro_est_tou = *new_ro_est_tou+ (*new_V_sca_est_tou +
 k1*delta_ro_tou)*time_step;
145 *temp_new_V_sca_est_tou=*new_V_sca_est_tou+ (k2*delta_ro_tou)*time_step;
146 }
147
148
149 /* Function: mdlInitializeSizes ===
150 * Abstract:
151 * Setup sizes of the various vectors.
152 */

 130

153 static void mdlInitializeSizes(SimStruct *S)
154 {
155 ssSetNumSFcnParams(S, 3); /* Number of expected parameters */
156 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S))
157 {
158 return; /* Parameter mismatch will be reported by Simulink */
159 }
160
161 ssSetNumContStates(S, 0); /*defines 0 continuous states*/
162 ssSetNumDiscStates(S, 7); /*defines 7 discrete state*/
163
164 if (!ssSetNumInputPorts(S, 7)) return; /*defines 7 input ports*/
165 ssSetInputPortWidth(S, 0, 1); /*sets input 1 port size to 1*/
166 ssSetInputPortWidth(S, 1, 1); /*sets input 2 port size to 1*/
167 ssSetInputPortWidth(S, 2, 1); /*sets input 3 port size to 1*/
168 ssSetInputPortWidth(S, 3, 1); /*sets input 4 port size to 1*/
169 ssSetInputPortWidth(S, 4, 1); /*sets input 5 port size to 1*/
170 ssSetInputPortWidth(S, 5, 1); /*sets input 6 port size to 1*/
171 ssSetInputPortWidth(S, 6, 1); /*sets input 7 port size to 1*/
172 ssSetInputPortDirectFeedThrough(S, 0, 1);
173 ssSetInputPortDirectFeedThrough(S, 1, 1);
174 ssSetInputPortDirectFeedThrough(S, 2, 1);
175 ssSetInputPortDirectFeedThrough(S, 3, 1);
176 ssSetInputPortDirectFeedThrough(S, 4, 1);
177 ssSetInputPortDirectFeedThrough(S, 5, 1);
178 ssSetInputPortDirectFeedThrough(S, 6, 1);
179
180 if (!ssSetNumOutputPorts(S,4)) return;
181 ssSetOutputPortWidth(S, 0, 1); /*sets output port 1 width to 1*/
182 ssSetOutputPortWidth(S, 1, 1); /*sets output port 2 width to 1*/
183 ssSetOutputPortWidth(S, 2, 1); /*sets output port 3 width to 1*/
184 ssSetOutputPortWidth(S, 3, 1); /*sets output port 4 width to 1*/
185
186 ssSetNumSampleTimes(S, 1);
187 ssSetNumRWork(S, 3); /*real vector*/
188 ssSetNumIWork(S, 2); /*integer vector*/
189 ssSetNumPWork(S, 7); /*pointer vector*/
190 ssSetNumModes(S, 0); /*mode vector*/
191 ssSetNumNonsampledZCs(S, 0); /*number of zero crossings*/
192
193 /* Take care when specifying exception free code - see sfuntmpl_doc.c */
194 ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);
195 }
196
197
198 /* Function: mdlInitializeSampleTimes =====================================
199 * Abstract:
200 * Discrete sample time of dT seconds and specify that we are doing
201 * function-calls on the 1st element of the 1st output port.
202 */
203 static void mdlInitializeSampleTimes(SimStruct *S)
204 {
205 ssSetSampleTime(S, 0, dT); /*sets sample time to dT seconds*/
206 ssSetOffsetTime(S, 0, 0.0); /*indicates 0 offset time*/
207

 131

208 ssSetCallSystemOutput(S,0); /* call on first element */
209 ssSetModelReferenceSampleTimeDefaultInheritance(S);
210 }
211
212
213 /*Function: mdlStart ===
214
215 *Abstract:
216 * This function sets up the variables passed between the function and
216 * the s-function.
217 */
218 #define MDL_START
219
220 static void mdlStart(SimStruct *S)
221 {
222 int_T index, integrator_flag;
223 real_T initial_position, initial_velocity, ro_optimize_start;
224
225 /*The real_T variables below denote the buffers used to store
226 *velocity and position data over multiple iterations of the
227 *s-function*/
228 real_T *velocity_data, *position_data;
229 real_T *new_V_sca_est_tou, *new_ro_est_tou;
230 real_T *x_PVNT_data, *y_PVNT_data, *z_PVNT_data;
231
232 /*The buffers are allocated enough memory to store 'MAX_INDEX' data
233 *with each data space being 'real_T' size. The 'calloc' command also
234 *initializes the buffers*/
235 velocity_data = (real_T *) calloc(MAX_INDEX, sizeof(real_T));
236 position_data = (real_T *) calloc(MAX_INDEX, sizeof(real_T));
237 new_V_sca_est_tou = (real_T *) calloc(MAX_INDEX, sizeof(real_T));
238 new_ro_est_tou = (real_T *) calloc(MAX_INDEX, sizeof(real_T));
239 x_PVNT_data = (real_T *) calloc(MAX_INDEX, sizeof(real_T));
240 y_PVNT_data = (real_T *) calloc(MAX_INDEX, sizeof(real_T));
241 z_PVNT_data = (real_T *) calloc(MAX_INDEX, sizeof(real_T));
242
243 index = 0; /*initializes index to 0*/
244 integrator_flag = 0; //sets integration reset flag to 0
245 initial_velocity = 0.0; //initializes position and velocity
246 initial_position = 0.0; //IC's to 0
247 ro_optimize_start = 0.0;
248
249
250 /*Sets the pointer work variables for the buffers*/
251 ssSetPWorkValue(S, 0, (real_T *)velocity_data);
252 ssSetPWorkValue(S, 1, (real_T *)position_data);
253 ssSetPWorkValue(S, 2, (real_T *)new_V_sca_est_tou);
254 ssSetPWorkValue(S, 3, (real_T *)new_ro_est_tou);
255 ssSetPWorkValue(S, 4, (real_T *)x_PVNT_data);
256 ssSetPWorkValue(S, 5, (real_T *)y_PVNT_data);
257 ssSetPWorkValue(S, 6, (real_T *)z_PVNT_data);
258
259 ssSetIWorkValue(S, 0, index); /*sets the first integer work
260 *value to the index variable*/
261

 132

262 ssSetIWorkValue(S, 1, integrator_flag); /*sets the second integer work
263 *value to the integrator flag*/
264
265 ssSetRWorkValue(S, 0, initial_velocity); /*sets the real work values*/
266 ssSetRWorkValue(S, 1, initial_position);
267 ssSetRWorkValue(S, 2, ro_optimize_start);
268 }
269
270
271 /* Function: mdlOutputs ===
272 * Abstract:
273 * Issue ssCallSystemWithTid on 1st output element of 1st output port.
274 */
275 static void mdlOutputs(SimStruct *S, int_T tid)
276 {
277 /*S-function input and output declarations*/
278 real_T *ro_est = ssGetRealDiscStates(S,0);
279 real_T *V_sca_est = ssGetRealDiscStates(S,1);
280 real_T *PVNT = ssGetRealDiscStates(S,2);
281 real_T *x_PVNT = ssGetRealDiscStates(S,3);
282 real_T *y_PVNT = ssGetRealDiscStates(S,4);
283 real_T *z_PVNT = ssGetRealDiscStates(S,5);
284 real_T *clock = ssGetRealDiscStates(S,6);
285 InputRealPtrsType ro_est_Ptrs = ssGetInputPortRealSignalPtrs(S,0);
286 InputRealPtrsType V_sca_est_Ptrs = ssGetInputPortRealSignalPtrs(S,1);
287 InputRealPtrsType PVNT_Ptrs = ssGetInputPortRealSignalPtrs(S,2);
288 InputRealPtrsType x_PVNT_Ptrs = ssGetInputPortRealSignalPtrs(S,3);
289 InputRealPtrsType y_PVNT_Ptrs = ssGetInputPortRealSignalPtrs(S,4);
290 InputRealPtrsType z_PVNT_Ptrs = ssGetInputPortRealSignalPtrs(S,5);
291 InputRealPtrsType clock_Ptrs = ssGetInputPortRealSignalPtrs(S,6);
292 real_T *TgtP_IC = ssGetOutputPortRealSignal(S,1);
293 real_T *TgtV_IC = ssGetOutputPortRealSignal(S,2);
294 real_T *integrator_reset = ssGetOutputPortRealSignal(S,3);
295
296 int_T index, integrator_flag;
297 real_T initial_velocity, initial_position;
298 real_T temp_new_V_sca_est_tou, temp_new_ro_est_tou;
299
300 /*buffer declarations for mdlOutputs*/
301 real_T *velocity_data, *position_data;
302 real_T *new_V_sca_est_tou, *new_ro_est_tou;
303 real_T *x_PVNT_data, *y_PVNT_data, *z_PVNT_data;
304
305 /*defines pointer to output file for forward Euler integration results*/
306 //FILE *Euler_output_data;
307
308 /*defines intermediate postion and velocity matrices*/
309 float delta_ro_tou = 0.0, time_index = 0.0;
310 int i = 0; /*counter*/
311 int road_eq_selector = road_equation_selection; /*picks which road
312 *equation is to be
313 *used*/
314 int reset_index = 0; /*flag indicating and index reset to 0*/
315 double k1=0.5, k2=0.5; /*sets integrator gains*/
316 float delay = 0.0, time_step = dT;

 133

317
318 /*optimization variables*/
319 real_T ro_star, ro_optimize_start;
320
321 /*
322 * ssCallSystemWithTid is used to execute a function-call subsystem. The
323 * 2nd argument is the element of the 1st output port index which
324 * connected to the function-call subsystem. Function-call subsystems
325 * can be driven by the first output port of s-function blocks.
326 */
327
328 UNUSED_ARG(tid); /* not used in single tasking mode */
329
330 /*Retrieves the pointer work values for the buffers*/
331 velocity_data = (real_T *)ssGetPWorkValue(S, 0);
332 position_data = (real_T *)ssGetPWorkValue(S, 1);
333 new_V_sca_est_tou = (real_T *)ssGetPWorkValue(S, 2);
334 new_ro_est_tou = (real_T *)ssGetPWorkValue(S, 3);
335 x_PVNT_data = (real_T *)ssGetPWorkValue(S, 4);
336 y_PVNT_data = (real_T *)ssGetPWorkValue(S, 5);
337 z_PVNT_data = (real_T *)ssGetPWorkValue(S, 6);
338
339 /*Retrieves integer and real work values*/
340 index = ssGetIWorkValue(S,0);
341 integrator_flag = ssGetIWorkValue(S,1);
342 initial_velocity = ssGetRWorkValue(S,0);
343 initial_position = ssGetRWorkValue(S,1);
344 ro_optimize_start = ssGetRWorkValue(S,2);
345
346 /*creates .txt file for output results*/
347 //Euler_output_data = fopen("Euler_data_rf.txt", "w");
348
349 /*Entire sequence is in an 'if' loop to ensure that there is no
350 *overflow for the position and velocity arrays (defined with a maximum
351 *of MAX_INDEX data points.)*/
352 if(index <= (int)MAX_INDEX)
353 {
354 TgtP_IC[0] = initial_position; /*sets outputs to initial V and P*/
355 TgtV_IC[0] = initial_velocity;
356
357 integrator_reset[0] = integrator_flag; /*sets output 3 to integration
358 *reset flag*/
359
360 if(!ssCallSystemWithTid(S,0,tid)) /*calls system with task ID 1*/
361 {
362 /* Error occurred which will be reported by Simulink */
363 return;
364 }
365
366 ro_est_Ptrs = ssGetInputPortRealSignalPtrs(S,0);/*Gets inputs*/
367 V_sca_est_Ptrs = ssGetInputPortRealSignalPtrs(S,1);
368
369 /*assigns the position and velocity data to the buffers*/
370 *position_data = (real_T)*ro_est_Ptrs[0];
371 *velocity_data = (real_T)*V_sca_est_Ptrs[0];

 134

372
373 /*resets the initial velocity and position values*/
374 initial_velocity = ssSetRWorkValue(S, 0, (real_T)*V_sca_est_Ptrs[0]);
375 initial_position = ssSetRWorkValue(S, 1, (real_T)*ro_est_Ptrs[0]);
376
377 /*resets the integrator reset to 0*/
378 integrator_flag = ssSetIWorkValue(S, 1, 0);
379
380 /*takes in x, y, and z coordinates from PVNT update*/
381 x_PVNT_Ptrs = ssGetInputPortRealSignalPtrs(S,3);
382 y_PVNT_Ptrs = ssGetInputPortRealSignalPtrs(S,4);
383 z_PVNT_Ptrs = ssGetInputPortRealSignalPtrs(S,5);
384
385 /*assigns coordinates to buffers*/
386 *x_PVNT_data = (real_T)*x_PVNT_Ptrs[0];
387 *y_PVNT_data = (real_T)*y_PVNT_Ptrs[0];
388 *z_PVNT_data = (real_T)*z_PVNT_Ptrs[0];
389 }
390
391 if ((real_T)*PVNT_Ptrs[0] >= 0.99)
392 /*indicates pulse is high (PVNT update present)*/
393 {
394
395 /*goes back delay/dT spaces in the PVNT position buffers to get the
396 *actual PVNT position update (NOTE: index = delay/dT)*/
397 x_PVNT_data = x_PVNT_data - index;
398 y_PVNT_data = y_PVNT_data - index;
399 z_PVNT_data = z_PVNT_data - index;
400
401
402 PVNT_optimization (x_PVNT_data, y_PVNT_data, z_PVNT_data,

ro_optimize_start, &ro_star, road_eq_selector);
403
404
405 /*calls the estimated ro and velocity values at time tou from the
406 *buffers*/
407 position_data = position_data - index;
408 velocity_data = velocity_data - index;
409
410 /*calculates the difference between the ro_star update value and the
411 *estimated ro value at time tou*/
412 delta_ro_tou = ro_star - *position_data;
413
414 /*sets up the initial conditions based on the ro input from the
415 *PVNT update*/
416 *new_ro_est_tou = ro_star;
417 *new_V_sca_est_tou = *velocity_data;
418
419 /*sets up time output for Euler_data file*/
420 delay = index;
421 time_index = *clock_Ptrs[0] - (delay / dT);
422
423 for (i=0; i<index; i++) /*increments counter from 0 to the
424 *maximum value of the index*/
425 {

 135

426 if (i != 0) /*allows normal integration after first iteration*/
427 {
428 delta_ro_tou = 0.0;
429 }
430
431 Euler_integration(k1, k2, delta_ro_tou, time_step, new_ro_est_tou,

new_V_sca_est_tou, &temp_new_V_sca_est_tou, &temp_new_ro_est_tou);
432
433 /*increments the new_ro_est_tou and new_V_sca_est_tou buffer
434 *pointers*/
435 new_ro_est_tou++;
436 new_V_sca_est_tou++;
437
438 /*sets the now incremented buffers equal to the results from
439 *the forward Euler integration*/
440 *new_ro_est_tou = temp_new_ro_est_tou;
441 *new_V_sca_est_tou = temp_new_V_sca_est_tou;
442
443 /*prints Euler integration data to the output file for later
444 *comparison to actual target data*/
445 //fprintf(Euler_output_data, "%f %f %f \n", time_index, (float)*new_ro_est_tou,

(float)*new_V_sca_est_tou);
446 time_index = time_index + dT;
447 }
448
449 /*resets the initial velocity and position values that will go to
450 *the open loop filter during the next function iteration.*/
451 initial_velocity = ssSetRWorkValue(S, 0, *new_V_sca_est_tou);
452 initial_position = ssSetRWorkValue(S, 1, *new_ro_est_tou);
453
454 /*resets the initial ro value for use in the optimization loop*/
455 ro_optimize_start = ssSetRWorkValue(S, 2, initial_position);
456
457 reset_index = 1; /*triggers flag to indicate that an index
458 *reset is needed*/
459
460 integrator_flag = ssSetIWorkValue(S, 1, 1); /*triggers open loop
461 *integrator reset*/
462 }
463
464 if((index <= (int)MAX_INDEX) && (reset_index==0)) /*checks to see if flag is set*/
465 {
466 velocity_data++; /*increments buffer pointers*/
467 position_data++;
468 x_PVNT_data++;
469 y_PVNT_data++;
470 z_PVNT_data++;
471 index = ssSetIWorkValue(S, 0, index+1); /*increments index value*/
472 }
473 else
474 {
475 new_ro_est_tou=new_ro_est_tou-index;
476 new_V_sca_est_tou=new_V_sca_est_tou-index;
477 index = ssSetIWorkValue(S, 0, 0); /*resets index value to 0*/
478 }

 136

478
480 /*resets the pointer work values for the velocity_data and
481 *position_data buffers*/
482 ssSetPWorkValue(S, 0, (real_T *)velocity_data);
483 ssSetPWorkValue(S, 1, (real_T *)position_data);
484 ssSetPWorkValue(S, 4, (real_T *)x_PVNT_data);
485 ssSetPWorkValue(S, 5, (real_T *)y_PVNT_data);
486 ssSetPWorkValue(S, 6, (real_T *)z_PVNT_data);
487 }
488
489
490 /* Function: mdlUpdate ===
491 * Abstract:
492 * Increment the state for next time around (i.e. a counter).
493 */
494
495 #define MDL_UPDATE
496 static void mdlUpdate(SimStruct *S, int_T tid)
497 {
498
499 UNUSED_ARG(tid); /* not used in single tasking mode */
500
501 }
502
503
504 /* Function: mdlTerminate ===
505 * Abstract:
506 * Required to have this routine.
507
508 static void mdlTerminate(SimStruct *S)
509 {
510 real_T *velocity_data = ssGetPWorkValue(S, 0);
511 real_T *position_data = ssGetPWorkValue(S, 1);
512 real_T *new_V_sca_est_tou = ssGetPWorkValue(S, 2);
513 real_T *new_ro_est_tou = ssGetPWorkValue(S, 3);
514 real_T *x_PVNT_data = ssGetPWorkValue(S, 4);
515 real_T *y_PVNT_data = ssGetPWorkValue(S, 5);
516 real_T *z_PVNT_data = ssGetPWorkValue(S, 6);
517
518 //FILE *Euler_output_data;
519
520 UNUSED_ARG(S); /* unused input argument */
521
522 /*releases data stored in buffers*/
523 free(velocity_data);
524 free(position_data);
525 free(new_V_sca_est_tou);
526 free(new_ro_est_tou);
527 free(x_PVNT_data);
528 free(y_PVNT_data);
529 free(z_PVNT_data);
530
531 /*closes Euler integration data output file*/
532 //fclose(Euler_output_data);
533 }

 137

534
535 #ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
536 #include "simulink.c" /* MEX-file interface mechanism */
537 #else
538 #include "cg_sfun.h" /* Code generation registration function */
539 #endif

 138

THIS PAGE INTENTIONALLY LEFT BLANK

 139

LIST OF REFERENCES

[1] Wolfgang Baer. “Generating One-Meter Terrain Data for Tactical Simulations.”
In Military Intelligence Professional Bulletin (Oct-Dec, 2002) [electronic bulletin
board]. 19 May 2007.
http://findarticles.com/p/articles/mi_m0IBS/is_4_28/ai_94538586.

[2] Benjamin C. Kuo. Digital Control Systems. San Francisco: Holt, Rinehart and
Winston, Inc., 1980.

[3] “Perspective View Nascent Technologies.” 19 May 2007.
http://www.trac.nps.navy.mil/pvnt/.

[4] Robert A. Prince. “Autonomous Visual Tracking of Stationary Targets Using
Unmanned Aerial Vehicles.” Master’s Thesis, Naval Postgraduate School, June
2004.

[5] Chin Khoon Quek. “Vision Based Control and Target Range Estimation for Small
Unmanned Aerial Vehicle.” Master’s Thesis, Naval Postgraduate School,
December 2005.

[6] Kwee Chye Yap. “Incorporating Target Mensuration System for Target Motion
Estimation Along a Road Using Asynchronous Filter.” Master’s Thesis, Naval
Postgraduate School, December 2006.

 140

THIS PAGE INTENTIONALLY LEFT BLANK

 141

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Prof Anthony Healey
Chairman, Department of Mechanical and Astronautical Engineering
Naval Postgraduate School
Monterey, California

4. Prof Isaac Kaminer
Naval Postgraduate School
Monterey, California

5. Dr. Vladimir Dobrokhodov
Naval Postgraduate School
Monterey, California

6. Dr. Eng. Ioannis Kitsios
Naval Postgraduate School
Monterey, California

